纺织学报 ›› 2021, Vol. 42 ›› Issue (11): 117-123.doi: 10.13475/j.fzxb.20201204207

• 染整与化学品 • 上一篇    下一篇

退浆废水中自由基引发的聚乙烯醇交联沉淀研究

沈忱思1, 王曼1, 徐晨烨1, 王华平2, 李方1()   

  1. 1.东华大学 国家环境保护纺织工业污染防治工程技术中心, 上海 201620
    2.东华大学 纤维材料改性国家重点实验室, 上海 201620
  • 收稿日期:2020-12-14 修回日期:2021-03-25 出版日期:2021-11-15 发布日期:2021-11-29
  • 通讯作者: 李方
  • 作者简介:沈忱思(1985—),女,副教授,博士。主要研究方向为水污染控制化学。
  • 基金资助:
    上海市自然科学基金项目(21ZR1401500);新疆生产建设兵团重大科技项目计划(2020AA001)

Radical-induced crosslinking of poly(vinyl alcohol) from desizing wastewater

SHEN Chensi1, WANG Man1, XU Chenye1, WANG Huaping2, LI Fang1()   

  1. 1. State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
    2. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
  • Received:2020-12-14 Revised:2021-03-25 Published:2021-11-15 Online:2021-11-29
  • Contact: LI Fang

摘要:

针对纺织印染工业退浆废水中含聚合度高且化学稳定性强的聚乙烯醇(PVA),是纺织工业水污染治理难点的现状,利用过硫酸盐能够引发自由基交联且氧化性强的优势,结合退浆废水高温排放的特点,使用热活化过硫酸盐体系通过自由基交联快速将PVA从废水中沉淀分离。考察了过硫酸盐投加量、反应时间、反应温度及pH值对PVA去除的影响。并利用电子顺磁共振谱、傅里叶变换红外光谱、X射线光电子能谱等对交联沉淀物进行表征分析。结果表明:在过硫酸盐投加量为10 g/L、废水温度为70 ℃时,处理30 min后PVA即可有效交联沉淀,化学需氧量(COD)和PVA去除率分别可达95.1%和95.6%;过硫酸钾热活化主要产生硫酸根自由基和羟基自由基,PVA被自由基夺氢产生碳自由基,碳自由基相互结合可高效交联PVA并快速沉淀。

关键词: 聚乙烯醇, 退浆废水, 自由基交联, 过硫酸盐, 热活化

Abstract:

The desizing wastewater of the textile printing and dyeing industry contains a large amount of polyvinyl alcohol (PVA) with high polymerization and strong chemical stability, which is a difficult point in the water pollution treatment. Taking advantage of persulfate's ability to initiate free radical crosslinking and strong oxidation, combined with the characteristics of high temperature discharge of desizing wastewater, a thermally activated persulfate system was used to precipitate PVA from wastewater.The effects of persulfate dosage, reaction time, reaction temperature, and pH value on the removal of PVA were investigated.And electron paramagnetic resonance, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to analyze the cross-linked precipitates.The results show that when the dosage of persulfate was 10 g/L and the wastewater temperature was 70 ℃, PVA could be effectively cross-linked and precipitated after 30 minutes, and the removal rate of chemical oxygen demand (COD) and PVA could reach 95.1% and 95.6%,respectively.The production of sulfate radical and hydroxyl radical in thermally activated persulfate system induced the production of carbon-based radicals, and the carbon-based radicals continued to react together and produced the crosslinking product.

Key words: poly(vinyl alcohol), desizing wastewater, radical-induced crosslinking, persulfate, thermal activation

中图分类号: 

  • X703.1

图1

PVA模拟废水处理效果图"

图2

模拟废水的PVA及COD去除率"

图3

PVA交联沉淀的影响因素"

图4

PVA交联沉淀前后的红外光谱"

图5

PVA交联沉淀前后的XPS C1s谱图"

图6

PVA交联沉淀前后的XRD谱图"

图7

PS热活化体系处理PVA的EPR谱图"

图8

随反应时间变化的PVA重均分子量分布"

图9

PVA交联沉淀机制图"

[1] MARKETA J, LUDMILA V, MARTIN J. Water-soluble polymeric xenobiotics-polyvinyl alcohol and polyvinylpyrrolidon-and potential solutions to environmental issues: a brief review[J]. Journal of Environmental Management, 2018, 228:213-22.
doi: 10.1016/j.jenvman.2018.09.010
[2] 朱燕. 我国聚乙烯醇的市场分析[J]. 精细与专用化学品, 2017, 25(7):18-23.
ZHU Yan. Market analysis of polyvinyl alcohol in China[J]. Fine and Specialty Chemicals, 2017, 25(7):18-23.
[3] 李峰. 我国聚乙烯醇行业的发展动态[J]. 乙醛醋酸化工, 2015 (4):10-15.
LI Feng. The development trend of polyvinyl alcohol industry in China[J]. Acetaldehyde Acetic Acid Chemical Industry, 2015 (4):10-15.
[4] CHANDRAKANT R H, ANANDA J J, DIPAK V P, et al. A critical review on textile wastewater treatments: possible approaches[J]. Jouranl of Environmental Management, 2016, 182:351-366.
[5] 潘玉婷, 李方, 沈忱思, 等. 退浆废水中聚乙烯醇的膜蒸馏-超滤二级膜浓缩[J]. 纺织学报, 2018, 39(11):96-102.
PAN Yuting, LI Fang, SHEN Chensi, et al. Membrane distillation of polyvinyl alcohol in desizing wastewater-ultrafiltration secondary membrane concentration[J]. Journal of Textile Research, 2018, 39(11):96-102.
[6] 王伟, 焦玉木, 贾洪斌, 等. 印染生产各工序废水水质及处理技术[J]. 染整技术, 2018, 40(10):43-46.
WANG Wei, JIAO Yumu, JIA Hongbin, et al. Wastewater quality and treatment technology of printing and dyeing production[J]. Textile Dyeing and Finishing Journal, 2018, 40(10):43-46.
[7] 兰明. 含PVA的退浆废水处理工艺研究[D]. 广州:华南理工大学, 2016: 5.
LAN Ming. Study on treatment technology of desizing wastewater containing PVA[D]. Guangzhou:South China University of Technology, 2016: 5.
[8] NIHED B H. Poly (vinyl alcohol): review of its promising applications and insights into biodegradation[J]. RSC Advances, 2016, 6(46):39823-39832.
doi: 10.1039/C6RA05742J
[9] GUO Y, LAI B, ZHOU Y X. Pretreatment of polyvinyl alcohol-containing desizing wastewater by the Fenton process: oxidation and coagulation[J]. Environmental Engineering Science, 2016, 33(3):160-166.
doi: 10.1089/ees.2015.0327
[10] PAN Y T, LIU Y B, WU D L, et al. Application of Fenton pre-oxidation, Ca-induced coagulation, and sludge reclamation for enhanced treatment of ultra-high concentration poly(vinyl alcohol) wastewater[J]. Journal of Hazardous Materials, 2019, 389:121866.
doi: 10.1016/j.jhazmat.2019.121866
[11] LAN S H, WU X W, WANG Y T, et al. The pretreatment of polyvinyl alcohol wastewater with flocculation-Fenton oxidation technology based on Fe2+[J]. Advanced Materials Research, 2012, 518:3089-3095.
[12] WOLFGANG Z, HERMANN S. Process for the separation of polyvinyl alcohol from aqueous solutions:US, 4166033A, 1979-01-01.
[13] 郭丽, 奚旦立, 马春燕. 退浆废水中聚乙烯醇回收技术的研究[J]. 净水技术, 2008, 27(1):58-60.
GUO Li, XI Danli, MA Chunyan. Study on recovery technology of polyvinyl alcohol from desizing wastewater[J]. Water Purification Technology, 2008, 27(1):58-60.
[14] GUAN Y H, MAJ, LI X C, et al. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system[J]. Environmental Science and Technology, 2011, 45(21):9308-9314.
doi: 10.1021/es2017363
[15] 顾润南, 林苗. 退浆废水中聚乙烯醇PVA含量的测定[J]. 东华大学学报(自然科学版), 2005, 31(2):106-109.
GU Runnan, LIN Miao. Determination of PVA content in desizing wastewater[J]. Journal of Donghua University (Natural Science), 2005, 31(2):106-109.
[16] 王继鹏, 任永芳. 基于重铬酸钾快速检测法的废水中COD测定探究[J]. 化工管理, 2017(24):140-141.
WANG Jipeng, REN Yongfang. Determination of COD in wastewater based on potassium dichromate rapid detection method[J]. Chemical Management, 2017(24):140-141.
[17] JI Y F, DONG C X, KONG D Y, et al. Heat-activated persulfate oxidation of atrazine: implications for remediation of groundwater contaminated by herbicides[J]. Chemical Engineering Journal, 2015, 263:45-54.
doi: 10.1016/j.cej.2014.10.097
[18] KOLTHOFF I M, MILLER I K. The chemistry of persulfate: I: the kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium1[J]. Journal of the American Chemical Society, 1951, 73(7):1-30.
doi: 10.1021/ja01145a001
[19] 马京帅, 吕文英, 刘国光, 等. 热活化过硫酸盐降解水中的普萘洛尔[J]. 环境化学, 2017(2):221-228.
MA Jingshuai, LÜ Wenying, LIU Guoguang, et al. Thermally activated persulfate degrades propranolol in water[J]. Environmental Chemistry, 2017(2):221-228.
[20] 王婧苑, 会林, 霍艳丽. 聚乙烯醇的热老化机理研究[J]. 北京化工大学学报, 2005(2):68-71.
WANG Jingyuan, HUI Lin, HUO Yanli. Study on thermal aging mechanism of polyvinyl alcohol[J]. Journal of Beijing University of Chemical Technology, 2005(2):68-71.
[21] CLEMENS V S, EBERHARD B, PIOTR U, et al. Radical transfer reactions in polymers[J]. Radiation Physicsand Chemistry, 1999, 55(5):599-603.
[1] 姜生, 吉利梅. 聚乙烯醇增强氯化聚乙烯-受阻酚阻尼复合材料的制备及其性能[J]. 纺织学报, 2021, 42(04): 55-61.
[2] 管福成, 郭静, 吕丽华, 谭倩, 宋敬星, 张欣. 聚乙烯醇/磷虾蛋白纤维的氢键作用机制及其性能[J]. 纺织学报, 2020, 41(10): 7-13.
[3] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
[4] 万雨彩, 刘迎, 王旭, 易志兵, 刘轲, 王栋. 聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J]. 纺织学报, 2020, 41(04): 15-20.
[5] 付译鋆 安琪 张伟 张瑜 柯惠珍. 壳聚糖基纳米纤维载药体系及其缓释行为[J]. 纺织学报, 2018, 39(12): 7-12.
[6] 潘玉婷 李方 沈忱思 陈洪腾 刘艳彪 肖冬雪. 退浆废水中聚乙烯醇的膜蒸馏-超滤二级膜浓缩[J]. 纺织学报, 2018, 39(11): 96-102.
[7] 王宗乾 杨海伟 汤立洋 李长龙. 丝素蛋白/聚乙烯醇复合膜的制备及其表征[J]. 纺织学报, 2018, 39(11): 14-19.
[8] 龙啸云 张琰 葛明桥. 高强度抗老化土工布的制备与性能表征[J]. 纺织学报, 2018, 39(01): 66-70.
[9] 武海良 姚一军 沈艳琴 毛宁涛. 浆料混溶性对共混浆膜力学性能的影响[J]. 纺织学报, 2017, 38(10): 65-69.
[10] 王遥 朱青 胡春艳 王栋 阎克路. 改性聚乙烯醇-乙烯共聚物纳米纤维膜对重金属离子的吸附性能[J]. 纺织学报, 2017, 38(06): 11-16.
[11] 李伟 祝志峰 徐珍珍 徐文正 魏安方 张朝辉. 淀粉浆料用极性增塑剂及其增塑作用的研究进展[J]. 纺织学报, 2017, 38(04): 171-176.
[12] 吴静 郭静 杨利军 张森 宫玉梅. 海藻酸钠/南极磷虾蛋白/聚乙烯醇复合纤维的分子作用及其性能表征[J]. 纺织学报, 2017, 38(02): 7-13.
[13] 张康 荆蓉 程飞 朱谱新. 丙烯酰胺与聚乙烯醇的固相接枝共聚[J]. 纺织学报, 2016, 37(12): 65-70.
[14] 李旭明. He/O2等离子体处理对混合浆膜表面刻蚀的影响[J]. 纺织学报, 2014, 35(8): 54-0.
[15] 王建铨 吴津田 刘鹏清 叶光斗 徐建军. 聚乙烯醇水溶纤维干法纺丝成形模拟[J]. 纺织学报, 2013, 34(2): 23-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[3] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[4] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[5] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[6] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[7] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[8] 史途停;陈建勇. 入世后中国纺织业的发展趋势及对策[J]. 纺织学报, 2004, 25(02): 114 -115 .
[9] 刘从九. 我国纺织品绿色国际竞争力[J]. 纺织学报, 2004, 25(02): 116 -118 .
[10] 冯宪. 漫谈未来服装的发展方向[J]. 纺织学报, 2004, 25(02): 119 -120 .