纺织学报 ›› 2021, Vol. 42 ›› Issue (11): 17-23.doi: 10.13475/j.fzxb.20201102007

• 纤维材料 • 上一篇    下一篇

纳米芳纶气凝胶纤维的制备与微观结构调控

陈纤1,2, 李猛猛1,2, 赵昕1,2, 董杰1,2, 滕翠青1,2()   

  1. 1.东华大学 材料科学与工程学院, 上海 201620
    2.东华大学 纤维材料改性国家重点实验室, 上海 201620
  • 收稿日期:2020-11-20 修回日期:2021-07-22 出版日期:2021-11-15 发布日期:2021-11-29
  • 通讯作者: 滕翠青
  • 作者简介:陈纤(1996—),女,硕士。主要研究方向为高性能芳纶及其多孔材料。
  • 基金资助:
    中国纺织工业联合会应用基础研究项目(J201803)

Preparation and microstructure control of aerogel fibers based on aramid nanofibers

CHEN Xian1,2, LI Mengmeng1,2, ZHAO Xin1,2, DONG Jie1,2, TENG Cuiqing1,2()   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
  • Received:2020-11-20 Revised:2021-07-22 Published:2021-11-15 Online:2021-11-29
  • Contact: TENG Cuiqing

摘要:

针对目前气凝胶纤维力学强度不高的问题,以对位芳纶为原料制备了纳米芳纶分散液,通过湿法纺丝、溶剂置换、冷冻干燥工艺制备了纳米芳纶气凝胶纤维,并通过调节溶剂置换浴中叔丁醇与水的比例,对气凝胶纤维的微观结构进行调控。结果表明:调节溶剂置换浴可使气凝胶纤维具有良好的成形性,当溶剂置换浴中叔丁醇和水的体积比为1∶1时,气凝胶纤维内部呈蓬松网状结构,其比表面积可达165.4 m2/g,断裂强度为4.8 MPa;随着水的比例的增加,气凝胶纤维比表面积下降,力学强度增加;当以水为置换液时,纳米芳纶整齐取向排列,气凝胶纤维的断裂强度可达328.7 MPa。

关键词: 纳米芳纶, 气凝胶纤维, 湿法纺丝, 溶剂置换, 冷冻干燥, 高性能纤维

Abstract:

In order to further improve the mechanical strength of aerogel fibers, the dispersion solution of aramid nanofibers was prepared with para aramid fiber as raw materials, and aerogel fibers based on aramid nanofibers were fabricated via wet spinning, solvent displacement and following freeze-drying processes. The microstructures of aerogel fibers based on aramid nanofibers were also adjusted by changing the percentage of tertiary butyl alcohol and water in the solvent replacement bath. The results showed that the change of solvent replacement bath could give the aerogel fibers good formability. When the volumetric ratio of tert-butanol to water in the solvent replacement bath was 1∶1, the aerogel fiber had a fluffy network structure in the interior,its specific surface area reached 165.4 m2/g and the fracture strength was 4.8 MPa. With the increase of water content, the specific surface area of aerogel fibers decreased with enhanced the mechanical strength. When only water was used as the solvent replacement solution, the aramid nanofibers were neatly orientated in the fiber length direction, and the fracture strength of aerogel fibers reached 328.7 MPa.

Key words: aramid nanofiber, aerogel fiber, wet spinning, solvent replacement, freeze drying, high-performance fiber

中图分类号: 

  • TS430

图1

纳米芳纶气凝胶纤维的制备流程示意图"

图2

纳米芳纶制备流程及制备原理"

图3

纳米芳纶的TEM照片"

图4

常规芳纶与纳米芳纶的傅里叶红外光谱图与XRD谱图"

图5

2#~5#纳米芳纶气凝胶纤维的截面与表面的SEM照片"

图6

1#纳米芳纶气凝胶纤维的表面和截面SEM照片"

图7

不同制备条件下纳米芳纶气凝胶纤维的收缩率与比表面积曲线和孔隙率柱状图"

表1

纳米芳纶气凝胶纤维的密度"

样品编号 密度/(mg·cm-3) 样品编号 密度/(mg·cm-3)
1# 812 4# 91
2# 35 5# 136
3# 50

图8

不同制备条件下纳米芳纶气凝胶纤维的应力-应变曲线"

[1] KINOSHITAM, SUGAMURA T, SHIMOYAMA Y. Effect of solvent species inside wet gel on fabrication of titania nanoparticle by supercritical carbon dioxide drying[J]. Journal of Supercritical Fluids, 2016, 110:90-96.
doi: 10.1016/j.supflu.2015.12.015
[2] KUNANUSONT N, SHIMOYAMA Y. Porous carbon electrode for Li-air battery fabricated from solvent expansion during supercritical drying[J]. Journal of Supercritical Fluids, 2017, 133:77-85.
doi: 10.1016/j.supflu.2017.09.030
[3] ZHAO H B, CHEN M, CHEN H B. Thermally insulating and flame-retardant polyaniline/pectin aerogels[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8):7012-7019.
[4] LU A, WAND J Y, DONALD P, et al. An all-ceramic, anisotropic, and flexible aerogel insulation material[J]. Nano Letters, 2020, 20(5):3828-3835.
doi: 10.1021/acs.nanolett.0c00917
[5] CHEN X, LIU H, ZHENG Y, et al. Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor[J]. ACS Applied Materials & Interfaces, 2019, 11(45):42594-42606.
[6] WU T, DONG J, GAN F, et al. Low dielectric constant and moisture-resistant polyimide aerogels containing trifluoromethyl pendent groups[J]. Applied Surface Science, 2018, 440:595-605.
doi: 10.1016/j.apsusc.2018.01.132
[7] MEADOR M B, AGNELLO M, MCCORKLE L, et al. Moisture-resistant polyimide aerogels containing propylene oxide links in the backbone[J]. ACS Applied Materials & Interfaces, 2016, 8(42):29073-29079.
[8] ZHANG J, CHENG Y, TEBYETEKERWA M, et al. "Stiff-soft" binary synergistic aerogels with superflexibility and high thermal insulation performance[J]. Advanced Functional Materials, 2019, 29(15):1806407.
doi: 10.1002/adfm.v29.15
[9] LEE T W, LEE S E, JEONG Y G. Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers[J]. ACS Applied Materials & Interfaces, 2016, 8(20):13123-13132.
[10] ZENG Z, WU T, HAN D, et al. Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding[J]. ACS Nano, 2020, 14(3):2927-2938.
doi: 10.1021/acsnano.9b07452
[11] HAO P, ZHAO Z, LENG Y, et al. Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors[J]. Nano Energy, 2015, 15:9-23.
doi: 10.1016/j.nanoen.2015.02.035
[12] DU Y, ZHANG X, WANG J, et al. Reaction-spun transparent silica aerogel fibers[J]. ACS Nano, 2020, 14(9):11919-11928.
doi: 10.1021/acsnano.0c05016
[13] YANG M, CAO K, SUI L, et al. Dispersions of aramid nanofibers: a new nanoscale building block[J]. ACS Nano, 2011, 5(9):6945-6954.
doi: 10.1021/nn2014003
[14] LI Y, KANG Z, YAN X, et al. Three-dimensional reticulate CNT-aerogel for high mechanical flexibility fiber supercapacitor[J]. Nanoscale, 2018, 10(19):9360-9368.
doi: 10.1039/C8NR01991F
[15] WANG H, DONG Q, YAO J, et al. Colorless silk/copper sulfide hybrid fiber and fabric with spontaneous heating property under sunlight[J]. Biomacromolecules, 2020, 21(4):1596-1603.
doi: 10.1021/acs.biomac.0c00170
[16] WANG Z, YANG H, LI Y, et al. Robust silk fibroin/graphene oxide aerogel fiber for radiative heating textiles[J]. ACS Applied Materials & Interfaces, 2020, 12(13):15726-15736.
[17] DEWILDE S, WINTERS J, DEHAEN W, et al. Polymerization of PPTA in ionic liquid/cosolvent mixtures[J]. Macromolecules, 2017, 50(8):3089-3100.
doi: 10.1021/acs.macromol.7b00579
[18] BENZAIT Z, TRABZON L. A review of recent research on materials used in polymer-matrix composites for body armor application[J]. Journal of Composite Materials, 2018, 52(23):3241-3263.
doi: 10.1177/0021998318764002
[19] 刘克杰, 杨琴. 有机特种纤维介绍[J]. 合成纤维, 2013, 42(1):25-29.
LIU Kejie, YANG Qin. Introduction to organic special fibers[J]. Synthetic Fibre in China, 2013, 42(1):25-29.
[20] ZHOU J, HSIEH Y L. Nanocellulose aerogel-based porous coaxial fibers for thermal insulation[J]. Nano Energy, 2019, 68:104305.
doi: 10.1016/j.nanoen.2019.104305
[21] 杜松, 左建国, 邓英杰. 叔丁醇-水共溶剂冷冻干燥工艺及其在药剂学中的应用[J]. 中国药剂学杂志(网络版), 2006(3):116-121.
DU Song, ZUO Jianguo, DENG Yingjie. Tert-butanol-water co-solvent freeze-drying process and its application in pharmacy[J]. Chinese Journal of Pharmacy, 2006(3):116-121.
[22] KARADAGLI I, SCHULZ B, SCHESTAKOW M, et al. Production of porous cellulose aerogel fibers by an extrusion process[J]. Journal of Supercritical Fluids, 2015, 106:105-114.
doi: 10.1016/j.supflu.2015.06.011
[23] LIU Z, LYU J, FAND D, et al. Nanofibrous Kevlar aerogel threads for thermal insulation in harsh environments[J]. ACS Nano, 2019, 13(5):5703-5711.
doi: 10.1021/acsnano.9b01094
[24] WANG F, WU Y, HUANG Y. High strength, thermostable and fast-drying hybrid transparent membranes with POSS nanoparticles aligned on aramid nanofibers[J]. Composites Part A: Applied Science and Manufacturing, 2018, 110:154-161.
doi: 10.1016/j.compositesa.2018.04.031
[1] 陈子晗, 姚勇波, 生俊露, 颜志勇, 张玉梅, 王华平. 纤维素/海藻酸钙共混纤维的制备及其性能[J]. 纺织学报, 2021, 42(12): 15-20.
[2] 何聚, 刘晓辉, 苏晓伟, 林生根, 任元林. 星型无卤阻燃剂改性粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(10): 34-40.
[3] 李凤艳, 叶天宇, 展晓晴, 赵健, 李聃阳, 王瑞. 涤纶与芳纶及超高分子量聚乙烯纤维复合纱防刺织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 82-88.
[4] 王慧云, 王萍, 李媛媛, 张岩. 中空多孔异形聚丙烯腈纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 50-55.
[5] 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41.
[6] 马跃, 郭静, 殷聚辉, 赵秒, 宫玉梅. 纤维素/氧化纤维素/南极磷虾蛋白复合抗菌纤维的制备与表征[J]. 纺织学报, 2020, 41(11): 34-40.
[7] 杨雅茹, 沈小军, 唐柏林, 牛梅. 超高分子量聚乙烯纤维的无卤阻燃整理[J]. 纺织学报, 2020, 41(11): 109-115.
[8] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[9] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[10] 万雨彩, 刘迎, 王旭, 易志兵, 刘轲, 王栋. 聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J]. 纺织学报, 2020, 41(04): 15-20.
[11] 岳程飞, 丁长坤, 李璐, 程博闻. 碳化二亚胺/羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7.
[12] 党丹旸, 崔灵燕, 王亮, 刘雍. 纤维素纳米纤维/纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(02): 1-6.
[13] 宋乐, 沈兰萍, 黄显雯, 衡芳芳, 马洪波, 欧阳琴, 陈鹏, 王瑄. 木质素/聚丙烯腈复合纤维的制备及其性能[J]. 纺织学报, 2020, 41(02): 7-12.
[14] 欧阳鹏飞, 张玉芳, 贾春紫, 张嘉煜. 用竹浆粕/离子液体复配体系纺制的再生纤维及其性能[J]. 纺织学报, 2020, 41(01): 21-25.
[15] 李阵群, 许多, 魏春艳, 钱永芳, 吕丽华. 棉秆皮纤维素/氧化石墨烯纤维的制备及其力学性能和吸附性能[J]. 纺织学报, 2020, 41(01): 15-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[8] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[9] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[10] 姚玉元;陈文兴;张利;潘勇. 催化氧化型消臭蚕丝纤维的研究[J]. 纺织学报, 2004, 25(03): 7 -8 .