纺织学报 ›› 2021, Vol. 42 ›› Issue (11): 17-23.doi: 10.13475/j.fzxb.20201102007
陈纤1,2, 李猛猛1,2, 赵昕1,2, 董杰1,2, 滕翠青1,2()
CHEN Xian1,2, LI Mengmeng1,2, ZHAO Xin1,2, DONG Jie1,2, TENG Cuiqing1,2()
摘要:
针对目前气凝胶纤维力学强度不高的问题,以对位芳纶为原料制备了纳米芳纶分散液,通过湿法纺丝、溶剂置换、冷冻干燥工艺制备了纳米芳纶气凝胶纤维,并通过调节溶剂置换浴中叔丁醇与水的比例,对气凝胶纤维的微观结构进行调控。结果表明:调节溶剂置换浴可使气凝胶纤维具有良好的成形性,当溶剂置换浴中叔丁醇和水的体积比为1∶1时,气凝胶纤维内部呈蓬松网状结构,其比表面积可达165.4 m2/g,断裂强度为4.8 MPa;随着水的比例的增加,气凝胶纤维比表面积下降,力学强度增加;当以水为置换液时,纳米芳纶整齐取向排列,气凝胶纤维的断裂强度可达328.7 MPa。
中图分类号:
[1] |
KINOSHITAM, SUGAMURA T, SHIMOYAMA Y. Effect of solvent species inside wet gel on fabrication of titania nanoparticle by supercritical carbon dioxide drying[J]. Journal of Supercritical Fluids, 2016, 110:90-96.
doi: 10.1016/j.supflu.2015.12.015 |
[2] |
KUNANUSONT N, SHIMOYAMA Y. Porous carbon electrode for Li-air battery fabricated from solvent expansion during supercritical drying[J]. Journal of Supercritical Fluids, 2017, 133:77-85.
doi: 10.1016/j.supflu.2017.09.030 |
[3] | ZHAO H B, CHEN M, CHEN H B. Thermally insulating and flame-retardant polyaniline/pectin aerogels[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8):7012-7019. |
[4] |
LU A, WAND J Y, DONALD P, et al. An all-ceramic, anisotropic, and flexible aerogel insulation material[J]. Nano Letters, 2020, 20(5):3828-3835.
doi: 10.1021/acs.nanolett.0c00917 |
[5] | CHEN X, LIU H, ZHENG Y, et al. Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor[J]. ACS Applied Materials & Interfaces, 2019, 11(45):42594-42606. |
[6] |
WU T, DONG J, GAN F, et al. Low dielectric constant and moisture-resistant polyimide aerogels containing trifluoromethyl pendent groups[J]. Applied Surface Science, 2018, 440:595-605.
doi: 10.1016/j.apsusc.2018.01.132 |
[7] | MEADOR M B, AGNELLO M, MCCORKLE L, et al. Moisture-resistant polyimide aerogels containing propylene oxide links in the backbone[J]. ACS Applied Materials & Interfaces, 2016, 8(42):29073-29079. |
[8] |
ZHANG J, CHENG Y, TEBYETEKERWA M, et al. "Stiff-soft" binary synergistic aerogels with superflexibility and high thermal insulation performance[J]. Advanced Functional Materials, 2019, 29(15):1806407.
doi: 10.1002/adfm.v29.15 |
[9] | LEE T W, LEE S E, JEONG Y G. Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers[J]. ACS Applied Materials & Interfaces, 2016, 8(20):13123-13132. |
[10] |
ZENG Z, WU T, HAN D, et al. Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding[J]. ACS Nano, 2020, 14(3):2927-2938.
doi: 10.1021/acsnano.9b07452 |
[11] |
HAO P, ZHAO Z, LENG Y, et al. Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors[J]. Nano Energy, 2015, 15:9-23.
doi: 10.1016/j.nanoen.2015.02.035 |
[12] |
DU Y, ZHANG X, WANG J, et al. Reaction-spun transparent silica aerogel fibers[J]. ACS Nano, 2020, 14(9):11919-11928.
doi: 10.1021/acsnano.0c05016 |
[13] |
YANG M, CAO K, SUI L, et al. Dispersions of aramid nanofibers: a new nanoscale building block[J]. ACS Nano, 2011, 5(9):6945-6954.
doi: 10.1021/nn2014003 |
[14] |
LI Y, KANG Z, YAN X, et al. Three-dimensional reticulate CNT-aerogel for high mechanical flexibility fiber supercapacitor[J]. Nanoscale, 2018, 10(19):9360-9368.
doi: 10.1039/C8NR01991F |
[15] |
WANG H, DONG Q, YAO J, et al. Colorless silk/copper sulfide hybrid fiber and fabric with spontaneous heating property under sunlight[J]. Biomacromolecules, 2020, 21(4):1596-1603.
doi: 10.1021/acs.biomac.0c00170 |
[16] | WANG Z, YANG H, LI Y, et al. Robust silk fibroin/graphene oxide aerogel fiber for radiative heating textiles[J]. ACS Applied Materials & Interfaces, 2020, 12(13):15726-15736. |
[17] |
DEWILDE S, WINTERS J, DEHAEN W, et al. Polymerization of PPTA in ionic liquid/cosolvent mixtures[J]. Macromolecules, 2017, 50(8):3089-3100.
doi: 10.1021/acs.macromol.7b00579 |
[18] |
BENZAIT Z, TRABZON L. A review of recent research on materials used in polymer-matrix composites for body armor application[J]. Journal of Composite Materials, 2018, 52(23):3241-3263.
doi: 10.1177/0021998318764002 |
[19] | 刘克杰, 杨琴. 有机特种纤维介绍[J]. 合成纤维, 2013, 42(1):25-29. |
LIU Kejie, YANG Qin. Introduction to organic special fibers[J]. Synthetic Fibre in China, 2013, 42(1):25-29. | |
[20] |
ZHOU J, HSIEH Y L. Nanocellulose aerogel-based porous coaxial fibers for thermal insulation[J]. Nano Energy, 2019, 68:104305.
doi: 10.1016/j.nanoen.2019.104305 |
[21] | 杜松, 左建国, 邓英杰. 叔丁醇-水共溶剂冷冻干燥工艺及其在药剂学中的应用[J]. 中国药剂学杂志(网络版), 2006(3):116-121. |
DU Song, ZUO Jianguo, DENG Yingjie. Tert-butanol-water co-solvent freeze-drying process and its application in pharmacy[J]. Chinese Journal of Pharmacy, 2006(3):116-121. | |
[22] |
KARADAGLI I, SCHULZ B, SCHESTAKOW M, et al. Production of porous cellulose aerogel fibers by an extrusion process[J]. Journal of Supercritical Fluids, 2015, 106:105-114.
doi: 10.1016/j.supflu.2015.06.011 |
[23] |
LIU Z, LYU J, FAND D, et al. Nanofibrous Kevlar aerogel threads for thermal insulation in harsh environments[J]. ACS Nano, 2019, 13(5):5703-5711.
doi: 10.1021/acsnano.9b01094 |
[24] |
WANG F, WU Y, HUANG Y. High strength, thermostable and fast-drying hybrid transparent membranes with POSS nanoparticles aligned on aramid nanofibers[J]. Composites Part A: Applied Science and Manufacturing, 2018, 110:154-161.
doi: 10.1016/j.compositesa.2018.04.031 |
[1] | 陈子晗, 姚勇波, 生俊露, 颜志勇, 张玉梅, 王华平. 纤维素/海藻酸钙共混纤维的制备及其性能[J]. 纺织学报, 2021, 42(12): 15-20. |
[2] | 何聚, 刘晓辉, 苏晓伟, 林生根, 任元林. 星型无卤阻燃剂改性粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(10): 34-40. |
[3] | 李凤艳, 叶天宇, 展晓晴, 赵健, 李聃阳, 王瑞. 涤纶与芳纶及超高分子量聚乙烯纤维复合纱防刺织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 82-88. |
[4] | 王慧云, 王萍, 李媛媛, 张岩. 中空多孔异形聚丙烯腈纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 50-55. |
[5] | 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41. |
[6] | 马跃, 郭静, 殷聚辉, 赵秒, 宫玉梅. 纤维素/氧化纤维素/南极磷虾蛋白复合抗菌纤维的制备与表征[J]. 纺织学报, 2020, 41(11): 34-40. |
[7] | 杨雅茹, 沈小军, 唐柏林, 牛梅. 超高分子量聚乙烯纤维的无卤阻燃整理[J]. 纺织学报, 2020, 41(11): 109-115. |
[8] | 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7. |
[9] | 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14. |
[10] | 万雨彩, 刘迎, 王旭, 易志兵, 刘轲, 王栋. 聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J]. 纺织学报, 2020, 41(04): 15-20. |
[11] | 岳程飞, 丁长坤, 李璐, 程博闻. 碳化二亚胺/羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7. |
[12] | 党丹旸, 崔灵燕, 王亮, 刘雍. 纤维素纳米纤维/纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(02): 1-6. |
[13] | 宋乐, 沈兰萍, 黄显雯, 衡芳芳, 马洪波, 欧阳琴, 陈鹏, 王瑄. 木质素/聚丙烯腈复合纤维的制备及其性能[J]. 纺织学报, 2020, 41(02): 7-12. |
[14] | 欧阳鹏飞, 张玉芳, 贾春紫, 张嘉煜. 用竹浆粕/离子液体复配体系纺制的再生纤维及其性能[J]. 纺织学报, 2020, 41(01): 21-25. |
[15] | 李阵群, 许多, 魏春艳, 钱永芳, 吕丽华. 棉秆皮纤维素/氧化石墨烯纤维的制备及其力学性能和吸附性能[J]. 纺织学报, 2020, 41(01): 15-20. |
|