纺织学报 ›› 2021, Vol. 42 ›› Issue (12): 42-42.doi: 10.13475/j.fzxb.20210201807

• 纤维材料 • 上一篇    下一篇

热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能

许仕林1,2, 杨世玉3, 张亚茹1,2, 胡柳1,2, 胡毅1,2()   

  1. 1.浙江理工大学 先进纺织材料与制备技术教育部重点实验室, 浙江 杭州 310018
    2.浙江理工大学 生态染整技术教育部工程研究中心, 浙江 杭州 310018
    3.浙江技立新材料股份有限公司, 浙江 绍兴 312030
  • 收稿日期:2021-02-05 修回日期:2021-09-07 出版日期:2021-12-15 发布日期:2021-12-29
  • 通讯作者: 胡毅
  • 作者简介:许仕林(2000—),男。主要研究方向为疏水膜的制备及应用。
  • 基金资助:
    浙江省自然科学基金项目(LY21E030023);浙江理工大学基本科研业务费专项资金资助项目(2020Y001);浙江理工大学绍兴柯桥研究院预研基金项目(KYY2021006Y)

Preparation and properties of thermoplastic polyurethane/tefluororone amorphous fluoropolymer superhydrophobic nanofiber membranes

XU Shilin1,2, YANG Shiyu3, ZHANG Yaru1,2, HU Liu1,2, HU Yi1,2()   

  1. 1. Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Engineering Research Center for Eco-Dying and Finishing of Textiles,Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Zhejiang Technology Lixin Materials Co., Ltd., Shaoxing, Zhejiang 312030, China
  • Received:2021-02-05 Revised:2021-09-07 Published:2021-12-15 Online:2021-12-29
  • Contact: HU Yi

摘要:

针对纳米纤维膜力学性能低和疏水性较差的问题,首先采用静电纺丝法制备热塑性聚氨酯(TPU)纳米纤维膜,然后通过浸渍特氟龙无定形氟聚物(AF)溶液获得TPU/特氟龙AF超疏水纳米纤维膜,借助扫描电子显微镜、电子万能试验仪、视频接触角张力仪等探究了浸渍质量分数、浸渍时间对纳米纤维膜疏水性及力学性能的影响。结果表明:当特氟龙AF溶液质量分数为6%时,该纳米纤维膜水接触角大于150°,油接触角小于3°,展现出超疏水性;该纳米纤维膜的力学强度不受浸渍的影响,弹性模量可达到5.09 MPa,在过滤介质、生物医学领域等具有良好的潜在应用价值。

关键词: 静电纺丝, 热塑性聚氨酯, 特氟龙无定形氟聚物, 超疏水纳米纤维, 自清洁材料, 过滤材料

Abstract:

Aiming at the problems of low mechanical properties and poor-hydrophobicity of nanofiber membrane, thermoplastic polyurethane (TPU) nanofiber membrane was prepared by electrospinning,and the TPU/tefluororone amorphous fluoropolymer (Teflon AF) superhydrophobic nanofiber membrane was obtained by impregnating in Teflon AF solution. The influence of immersion concentration and dipping time on the hydrophobicity and mechanical properties of the nanofiber membranes were analyzed by scanning electron microscope, electronic universal tester, and video contact angle tensiometer. The results show that when the mass fraction of Teflon AF is increased to 6%, the water contact angle of the nanofiber membrane reaches 150°, and the oil contact angle becomes lower than 3°, showing a superhydrophobicity. The mechanical strength of the nanofiber membrane were not affected by the impregnation, and the modulus of elasticity displayed an increase to 5.09 Pa. The nanofiber membrane implies good potential application value in filter media and biomedical fields.

Key words: electrospinning, thermoplastic polyurethane, tefluororone amorphous fluoropolymer, superhydrophobic nanofiber, self-cleaning material, filter material

中图分类号: 

  • TQ340.64

表1

TPU/特氟龙AF纳米纤维膜制备方案"

样品编号 特氟龙AF溶液质量分数/% 浸渍时间/h
1# 0.0 0
2# 2.0 2
3# 6.0 2
4# 10.0 2
5# 2.0 6
6# 6.0 6
7# 10.0 6
8# 2.0 12
9# 6.0 12
10# 10.0 12

图1

浸渍特氟龙AF溶液前后TPU纳米纤维膜的扫描电镜照片"

表2

浸渍不同质量分数与时间的纳米纤维膜的疏水/亲油特征"

样品编号 水接触角 水滚动角 油接触角
1# 38.6 1.3
2# 126.9 6.0 1.2
3# 136.0 4.0 1.3
4# 141.6 4.0 2.2
5# 140.5 5.0 1.5
6# 146.0 5.0 1.6
7# 150.2 4.0 1.7
8# 150.4 4.0 1.4
9# 150.5 4.0 1.3
10# 156.5 4.0 1.3

表3

2种代表性液体表面张力"

液体 γL/(mJ·m-1) γ L D/(mJ·m-1) γ L p/(mJ·m-1) 性质
蒸馏水 72.8 21.8 51 极性
二碘甲烷 50.8 50.8 0 非极性

图2

浸渍特氟龙AF溶液前后TPU纳米纤维膜水接触角与二碘甲烷接触角"

图3

水滴滴落在TPU/特氟龙AF纳米纤维膜表面的动态行为"

图4

水从45°方向射向TPU/特氟龙AF纤维膜表面照片"

图5

浸渍特氟龙AF溶液前后TPU纳米纤维膜应力-应变曲线"

图6

透气率随纳米纤维膜厚度的变化"

图7

浸渍特氟龙AF溶液前后TPU纳米纤维膜质量变化率随时间变化曲线"

图8

水滴从纳米纤维膜表面带走灰尘"

[1] 钱伯章. 世界热塑性弹性体的现状和发展趋势[J]. 世界橡胶工业, 2005, 32(5):40-46.
QIAN Bozhang. The status quo and development trend of the world's thermoplastic elastomers[J]. The World Rubber Industry, 2005, 32(5):40-46.
[2] 梁诚. 热塑性弹性体生产现状与发展趋势[J]. 石油化工技术经济, 2005, 21(1):35-40.
LIANG Cheng. Thermoplastic elastomer production status and development trend[J]. Techno-Economics in Petrochemicals, 2005, 21(1):35-40.
[3] TOHEED Shaikh. 全球聚氨酯市场[J]. 中国涂料, 2020, 35(4):74-75.
TOHEED Shaikh. Global market for polyurethane[J]. China Coating, 2020, 35(4):74-75.
[4] 李岩, 仇天宝, 周治南, 等. 静电纺丝纳米纤维的应用进展[J]. 材料导报, 2011, 25(17):84-88.
LI Yan, QIU Tianbao, ZHOU Zhinan, et al. Application of electrospinning nanofibers[J]. Materials Reports, 2011, 25(17):84-88.
[5] 孟庆杰, 张兴祥. 静电法超细纤维的性能与应用研究[J]. 高分子材料科学与工程, 2004, 20(6):15-19.
MENG Qingjie, ZHANG Xingxiang. Research and application of electrospun ultra-fine fibers[J]. Polymer Materials Science and Engineering, 2004, 20(6):15-19.
[6] 申建鸣, 秦礼敏. 特氟纶纤维的特性与应用[J]. 国外纺织技术, 2001(1):8-10.
SHEN Jianming, QIN Limin. Characteristics and application of Teflon fiber[J]. Textile Technology Overseas, 2001(1):8-10.
[7] 鲍萍, 王秋美. 特氟纶纤维的制造、性能与应用[J]. 产业用纺织品, 2003, 21(4):35-37.
BAO Ping, WANG Qiumei. Manufacture, properties and application of Teflon fiber[J]. Technical Textiles, 2003, 21(4):35-37.
[8] VAZ C M, TUIJL S V, BOUTEN C, et al. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique[J]. Acta Biomaterialia, 2005, 1(5):575-582.
doi: 10.1016/j.actbio.2005.06.006
[9] 张丽, 王娇娜, 李从举. 静电纺丝热塑性聚氨酯纳米纤维的制备[J]. 聚氨酯工业, 2013, 28(3):29-31.
ZANG Li, WANG Jiaona, LI Congju. Preparation of electrospinning thermoplastic polyurethane nano-fibers[J]. Polyurethane Industry, 2013, 28(3):29-31.
[10] ALAWAJJI R A, GANESH K K, ZEID A N, et al. High temperature, transparent, superhydrophobic Teflon AF-2400/indium tin oxide nanocomposite thin films[J]. Nanotechnology, 2018, 30(17):175702.
doi: 10.1088/1361-6528/aaf262
[11] 周明, 王鸿博, 王银利, 等. 基于图像处理技术的纳米纤维膜孔隙率表征[J]. 纺织学报, 2012, 33(1):20-23.
ZHOU Ming, WANG Hongbo, WANG Yinli, et al. Characterization of the nanofiber membrane porosity based on image processing techniques[J]. Journal of Textile Research, 2012, 33(1):20-23.
[12] 吕鹏宇, 薛亚辉, 段慧玲. 超疏水材料表面液-气界面的稳定性及演化规律[J]. 力学进展, 2016, 46:179-225.
LÜ Pengyu, XUE Yahui, DUAN Huiling. Stability and evolution of surface liquid-air interface of superhydrophobic materials[J]. Progress in Mechanics, 2016, 46:179-225.
[13] 周颖, 姚理荣, 高强. 聚氨酯/聚偏氟乙烯共混膜防水透气织物的制备及其性能[J]. 纺织学报, 2014, 35(5):23-29.
ZHOU Ying, YAO Lirong, GAO Qiang. Fabrication and properties of polyurethane/polyvinylidene fluoride composite film waterproof and breathable fabric[J]. Journal of Textile Research, 2014, 35(5):23-29.
[14] SAGIT Shalel-Levanon, ABRAHAM Marmur. Validity and accuracy in evaluating surface tension of solids by additive approaches[J]. Journal of Colloid and Interface Science, 2003, 262:489-499.
pmid: 16256630
[15] 王玉浩, 马万彬, 周彦粉, 等. 静电纺聚氨酯纳米纤维膜的制备及其性能研究[J]. 塑料工业, 2019, 47(8):151-155.
WANG Yuhao, MA Wanbin, ZHOU Yanfen, et al. Preparation and properties of electrospun polyurethane nanofiber membrane[J]. Plastics Industry, 2019, 47(8):151-155.
[16] HAN D, STECKL A J. Superhydrophobic and oleophobic fibers by coaxial electrospinning[J]. Langmuir:The ACS Journal of Surfaces & Colloids, 2009, 25(16):9454-9462.
[1] 贾琳, 王西贤, 李环宇, 张海霞, 覃小红. 聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 34-41.
[2] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
[3] 周园园, 郑煜铭, 吴小琼, 邵再东. 静电纺纳米纤维光催化剂性能增强方法的研究进展[J]. 纺织学报, 2021, 42(11): 179-186.
[4] 吴钦鑫, 侯成义, 李耀刚, 张青红, 秦宗益, 王宏志. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(09): 24-30.
[5] 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45.
[6] 曹元鸣, 郑蜜, 李一飞, 翟旺宜, 李丽艳, 常朱宁子, 郑敏. 二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能[J]. 纺织学报, 2021, 42(09): 46-51.
[7] 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56.
[8] 叶成伟, 汪屹, 徐岚. 钴基分级多孔复合碳材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(08): 57-63.
[9] 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61.
[10] 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50.
[11] 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56.
[12] 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62.
[13] 刘朝军, 刘俊杰, 丁伊可, 马少锋, 张秀琴, 张建青. 空气过滤用高容尘膨体聚四氟乙烯复合材料的制备及其性能[J]. 纺织学报, 2021, 42(05): 31-37.
[14] 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8.
[15] 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[4] 史途停;陈建勇. 入世后中国纺织业的发展趋势及对策[J]. 纺织学报, 2004, 25(02): 114 -115 .
[5] 姚玉元;陈文兴;张利;潘勇. 催化氧化型消臭蚕丝纤维的研究[J]. 纺织学报, 2004, 25(03): 7 -8 .
[6] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[7] 顾大强;聂林. 塑胶压力软管增强层编织机[J]. 纺织学报, 2006, 27(1): 86 -88 .
[8] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .
[9] 万振凯;李静东. 三维编织复合材料压缩损伤声发射特性分析[J]. 纺织学报, 2006, 27(2): 20 -24 .
[10] 包晓敏;汪亚明. 基于最小风险贝叶斯决策的织物图像分割[J]. 纺织学报, 2006, 27(2): 33 -36 .