纺织学报 ›› 2021, Vol. 42 ›› Issue (12): 49-54.doi: 10.13475/j.fzxb.20201208206

• 纤维材料 • 上一篇    下一篇

基于三维显微成像的毛竹横截面结构表征

陈海鸟, 田伟, 金肖克, 张红霞, 李艳清, 祝成炎()   

  1. 浙江理工大学 先进纺织材料与制备技术教育部重点实验室, 浙江 杭州 310018
  • 收稿日期:2020-12-31 修回日期:2021-08-09 出版日期:2021-12-15 发布日期:2021-12-30
  • 通讯作者: 祝成炎
  • 作者简介:陈海鸟(1995—),女,硕士。主要研究方向为仿生结构复合材料。
  • 基金资助:
    浙江理工大学研究生科研创新项目(11150031272017)

Analysis on cross-sectional structure of moso bamboo using three-dimensional microscope imaging

CHEN Hainiao, TIAN Wei, JIN Xiaoke, ZHANG Hongxia, LI Yanqing, ZHU Chengyan()   

  1. Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2020-12-31 Revised:2021-08-09 Published:2021-12-15 Online:2021-12-30
  • Contact: ZHU Chengyan

摘要:

为研究毛竹横截面的结构特征和分布规律,借助X射线三维显微镜对毛竹的维管束和基本组织薄壁细胞结构进行研究,分析了维管束长短轴、面积、体积分数和薄壁细胞面积的分布规律。结果表明:毛竹横截面由外到内,其维管束长轴逐渐减小,短轴逐渐增大,最后长短轴趋于一致,维管束面积逐渐增大,体积分数逐渐减小,相邻维管束中心轴距增大,单个薄壁细胞面积逐渐减小,整体上看毛竹横截面呈现梯度变化规律;受毛竹横截面梯度变化的启发,通过改变纤维和树脂的分布可实现仿生复合材料整体结构的梯度变化,将其应用于仿生复合材料设计中,可开展仿生纤维复合材料研究。

关键词: X射线三维显微镜, 毛竹结构, 维管束, 仿竹复合材料

Abstract:

In order to study the characteristics and distribution of the cross-sectional structure of moso bamboo, X-ray three-dimensional microscope was used to study the vascular bundle and the parenchyma cell structure of the basic tissue of moso bamboo, and the distribution rules of the long and short axis, area, volume fraction and parenchyma cell area of the vascular bundle were analyzed. The results showed that from the outside to the inside of the cross-section of moso bamboo, the vascular bundle long axis gradually decreased, the short axis gradually increased, and finally the long and short axis tended to be the same. After that, the vascular bundle area gradually increased, and the volume fraction gradually decreased. The adjacent center wheelbase increased, and the area of a single parenchyma cell gradually decreased. On the whole, the cross-section of moso bamboo demonstrated a gradient change. Inspired by the gradient change of bamboo cross-section, the gradient change could be applied to the engineering of bionic composites for specific properties. The gradient change of the overall structure of biomimetic composites can be realized by changing the distribution of fiber and resin. When it is applied to the design of biomimetic composites, the research of biomimetic fiber composites can be carried out.

Key words: X-ray three-dimensional microscope, moso bamboo structure, vascular bundle, moso bamboo-like composite material

中图分类号: 

  • TS101.4

图1

X射线三维显微镜光学放大原理"

图2

毛竹三维重构图"

图3

毛竹横截面及其定义"

图4

维管束分布图"

图5

毛竹维管束由外到内形态变化"

表1

维管束和导管面积均值"

结构名称 单个维管束面积 单个导管面积
竹璧外侧(半开放型) 0.109 2 0.004 2
竹璧内侧(开放型) 0.122 5 0.007 2

图6

维管束各区域及变化"

图7

毛竹横截面图像"

表2

单个薄壁细胞面积随点A所在切线距离的变化"

A所在切线距离/mm 单个薄壁细胞面积/mm2
0.19 0.000 6
0.38 0.001 5
0.57 0.002 1
0.76 0.002 7
[1] DIXON P G, GIBSON L J. The structure and mechanics of moso bamboo material[J]. Journal of The Royal Society Interface, 2014, 11:1-5.
[2] CHEN M, FEI B. In-situ observation on the morphological behavior of bamboo under flexural stress with respect to its fiber-foam composite structure[J]. BioResources, 2018, 13(3):5472-5478.
[3] FEI B, GAO Z, WANG J. Biological, natomical, and chemical characteristics of bamboo[M]. New York: Academic Press Inc, 2016:283-306.
[4] GHAVAMI K. Bamboo as reinforcement in structural concrete elements[J]. Cement and Concrete Composites, 2005, 27(6):637-649.
doi: 10.1016/j.cemconcomp.2004.06.002
[5] 冼杏娟, 冼定国. 竹材的微观结构及其与力学性能的关系[J]. 竹子研究汇刊, 1990, 9(3):10-23.
XIAN Xingjuan, XIAN Dingguo. The microstructure of bamboo and its relationship with mechanical properties[J]. Journal of Bamboo Research, 1990, 9(3):10-23.
[6] AMADA S, UNTAO S. Fracture properties of bamboo[J]. Composites Part B: Engineering, 2001, 32(5):451-459.
doi: 10.1016/S1359-8368(01)00022-1
[7] MA S, TAN H, WANG J, et al. Bamboo-imitated pipes for continuous fiber reinforced polyethylene[J]. Journal of Reinforced Plastics and Composites, 2018, 37(6):359-365.
doi: 10.1177/0731684417750285
[8] TANG M T, WANG Q, HE G Y, et al. Based on bionic optimization design and strength analysis of the tie rod of aircraft landing gear[J]. IOP Conference Series Materials Science and Engineering, 2020, 816(1):012007.
doi: 10.1088/1757-899X/816/1/012007
[9] 许述财, 邹猛, 魏灿刚, 等. 仿竹结构薄壁管的轴向耐撞性分析及优化[J]. 清华大学学报(自然科学版), 2014, 54(3):299-304.
XU Shucai, ZOU Meng, WEI Cangang, et al. Analysis and optimization of axial crash-resistance of bamboo structure thin-walled tube[J]. Journal of Tsinghua University (Natural Science Edition), 2014, 54(3):299-304.
[10] 许培俊, 王临江, 张毅, 等. 仿竹结构单丝玻璃纤维增强多孔聚醚砜基复合材料[J]. 复合材料学报, 2021, 38(4):1302-1312.
XU Peijun, WANG Linjiang, ZHANG Yi, et al. Bamboo like monofilament glass fiber reinforced porous polyethersulfone matrix composites[J]. Acta Materiae Compositae Sinica, 2021, 38(4):1302-1312.
[11] 冯龙, 孙存举, 毕文思, 等. 毛竹薄壁细胞组分分布及取向显微成像研究[J]. 光谱学与光谱分析, 2020, 40(9):2957-2961.
FENG Long, SUN Cunju, BI Wensi, et al. Microscopic imaging of distribution and orientation of parenchymal cell components in moso bambo edulis[J]. Spectroscopy and Spectral Analysis, 2020, 40(9):2957-2961.
[12] WANG Yu, LI Xiao, ZHANG Bo, et al. Meso-damage cracking characteristics analysis for rock and soil aggregate with CT test[J]. Science China(Technological Sciences), 2014, 57(7):1361-1371.
[13] ZHAO Hong, ZHAO Yixin. An automatic loading system forrock core testing with an industrial CT scanner[J]. Petroleum Science, 2011, 8(4):490-493.
doi: 10.1007/s12182-011-0166-5
[14] ABRAHAM E, BESSOU M, ZIEGLE A, et al. Terahertz, X-ray and neutron computed tomography of an eighteenth dynasty egyptian sealed pottery[J]. Applied Physics A: Materials Science & Processing, 2014, 117(3):963-972.
[15] LUO L F, LIN H, LI S. Quantification of 3-D soil macropore networks in different soil macropore networks in different soil types and land uses using computed tomography[J]. Journal of Hydrology, 2010, 393(1/2):53-64.
doi: 10.1016/j.jhydrol.2010.03.031
[16] LIONETTO F, MONTAGNA F, NATALI D, et al. Correlation between elastic properties and morphology in short fiber composites by X-ray computed micro-tomography[J]. Composites Part A: Applied Science and Manufacturing, 2020, 140:106169.
doi: 10.1016/j.compositesa.2020.106169
[17] 向娥琳. 毛竹生长过程中细胞壁结构与性能的变化研究[D]. 成都:四川农业大学, 2018:14-18.
XIANG Elin. Study on the changes of cell wall structure and properties during the growth of moso bamboo[D]. Chengdu: Sichuan Agricultural University, 2018:14-18.
[18] 陈涵. 仿竹径向结构的刚性管设计及其TIG增材研究[D]. 南京:南京理工大学, 2019:11-14.
CHEN Han. Design of rigid tube with bamboo like radial structure and its TIG additive[D]. Nanjing: Nanjing University of Technology, 2019:11-14.
[19] 尚莉莉, 孙正军, 江泽慧, 等. 毛竹维管束的截面形态及变异规律[J]. 林业科学, 2012, 48(12):16-21.
SHANG Lili, SUN Zhengjun, JIANG Zehui, et al. Cross section morphology and variation of vascular bundles in phyllostachys edulis[J]. Forestry Science, 2012, 48(12):16-21.
[20] 渠芳, 连承波, 柴震翰, 等. 基于三维X射线显微镜的孔隙性砂岩中变形带微观结构解析[J]. CT理论与应用研究, 2019, 28(2):167-174.
QU Fang, LIAN Chengbo, CHAI Zhenhan, et al. Analysis of microstructure of deformation zone in porous sandstone based on 3D X-ray microscope[J]. Research on CT Theory and Application, 2019, 28(2):167-174.
[21] CHEN M, DAI C, LIU R, et al. Influence of cell wall structure on the fracture behavior of bamboo(phyll-ostachys edulis) fibers[J]. Industrial Crops and Products, 2020, 155:112787.
doi: 10.1016/j.indcrop.2020.112787
[22] 周斌雄. 基于近红外及拉曼光谱技术的毛竹化学成分和细胞结构研究[D]. 杭州:浙江大学, 2015:2-3.
ZHOU Binxiong. Study on chemical composition and cellular structure of phyllostachys edulis based on near infrared spectroscopy and Raman spectroscopy[D]. Hangzhou: Zhejiang University, 2015:2-3.
[1] 姜雨淋, 王卉, 张克勤. 生物3D打印用丝素蛋白基凝胶墨水的研究进展[J]. 纺织学报, 2021, 42(11): 1-8.
[2] 陈莹, 方浩霞. 疏水性导电聚吡咯整理棉织物的制备及其性能[J]. 纺织学报, 2021, 42(10): 115-119.
[3] 李枫, 杨嘉豪, 赖耿昌, 王建南, 许建梅. 高分子聚合物栓塞微球的研究进展[J]. 纺织学报, 2021, 42(10): 180-189.
[4] 王春红, 杨璐, 胡敏, 王晓云, 王利剑. 乌拉草提取液中木犀草素含量的测定及其抗菌性能[J]. 纺织学报, 2021, 42(04): 114-120.
[5] 杨亚, 闫凤祎, 王卉, 张克勤. 丝素蛋白/磷酸八钙复合材料生物界面的蛋白质吸附和细胞响应[J]. 纺织学报, 2021, 42(02): 41-46.
[6] 宋广州, 涂芳芳, 丁梦瑶, 戴梦男, 殷音, 董凤林, 王建南. 丝素蛋白负电性增强改性及其对降钙素基因相关肽的加载能力[J]. 纺织学报, 2020, 41(12): 7-12.
[7] 刘明洁, 林婧, 关国平, BROCHU G, GUIDOIN R, 王璐. 典型纺织基人工韧带及其移出物结构与力学性能[J]. 纺织学报, 2020, 41(11): 66-72.
[8] 安琪, 付译鋆, 张瑜, 张伟, 王璐, 李大伟. 医用防护服用非织造材料的研究进展[J]. 纺织学报, 2020, 41(08): 188-196.
[9] 段红梅, 汪希铭, 黄子欣, 高晶, 王璐. 纤维基介孔SiO2药物载体的构建及其释药性能[J]. 纺织学报, 2020, 41(07): 15-22.
[10] 李思捷, 张彩丹. 聚天冬氨酸基纤维水凝胶的制备及其释药性能[J]. 纺织学报, 2020, 41(02): 20-25.
[11] 董科, 李思明, 吴官正, 黄虹蓉, 林钟石, 肖学良. 碳纤维/涤纶刺绣心电电极制备及其性能[J]. 纺织学报, 2020, 41(01): 56-62.
[12] 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97.
[13] 林永佳, 杨董超, 张佩华, 顾岩. 再生丝素蛋白/脱细胞真皮基质共混纳米纤维膜的制备及其性能[J]. 纺织学报, 2019, 40(07): 13-18.
[14] 钱璐敏, 张斌. 可溶性止血医用棉纱布的制备及其性能[J]. 纺织学报, 2019, 40(05): 102-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[6] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[7] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[8] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[9] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[10] 史途停;陈建勇. 入世后中国纺织业的发展趋势及对策[J]. 纺织学报, 2004, 25(02): 114 -115 .