纺织学报 ›› 2021, Vol. 42 ›› Issue (12): 81-89.doi: 10.13475/j.fzxb.20210300309
袁琼1, 邱海鹏2, 谢巍杰2, 王岭2, 王晓猛2, 张典堂1(), 钱坤1
YUAN Qiong1, QIU Haipeng2, XIE Weijie2, WANG Ling2, WANG Xiaomeng2, ZHANG Diantang1(), QIAN Kun1
摘要:
为解决陶瓷基复合材料在服役过程中因拉伸和弯曲导致的失效问题,以三维六向编织SiCf/SiC复合材料为研究对象,分析了受力过程中复合材料力学行为与纤维及结构的联系机制。采用微计算机断层扫描技术获得材料结构及孔隙的三维图像,对复合材料纵向和横向进行拉伸、弯曲性能测试,并阐明其损伤机制。结果表明:复合材料呈现明显的各向异性特性,纵向拉伸强度和弯曲强度分别是横向的10.37、5.06倍;复合材料不同方向受力的损伤模式不同,拉伸载荷下纵向试样裂纹沿着六向纱呈Z字形扩展,而横向试样裂纹沿着编织轴向扩展,最终导致拉伸破坏;弯曲载荷下裂纹沿着厚度方向扩展,并最终导致纵向及横向试样的韧性断裂,且纵向韧性优于横向。
中图分类号:
[1] | 张立同, 成来飞, 徐永东. 新型碳化硅陶瓷基复合材料的研究进展[J]. 航空制造技术, 2003(1):24-32. |
ZHANG Litong, CHENG Laifei, XU Yongdong. Res-earch progress of new silicon carbide ceramic matrix composites[J]. Aeronautical Manufacturing Technology, 2003(1):24-32. | |
[2] | WANG P R, LIU F Q, WANG H, et al. A review of third generation SiC fibers and SiC/SiC composites[J]. Journal of Materials Science & Technology, 2019, 35(12):2743-2750. |
[3] | 杨甜甜, 王岭, 邱海鹏, 等. 三维机织角联锁SiCf/SiC复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020, 41(12):73-80. |
YANG Tiantian, WANG Ling, QIU Haipeng, et al. Three-dimensional woven corner interlocking SiCf/SiC composite material bending performance and damage mechanism[J]. Journal of Textile Research, 2020, 41(12):73-80. | |
[4] | 赵陈伟, 毛军逵, 屠泽灿, 等. 纤维增韧陶瓷基复合材料热端部件的热分析方法现状和展望[J]. 航空学报, 2021, 42(6):136-161. |
ZHAO Chenwei, MAO Junkui, TU Zecan, et al. Current status and prospects of thermal analysis methods for fiber-toughened ceramic matrix composite hot-end parts[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6):136-161. | |
[5] |
LIU X D, ZHANG D T, SUN J, et al. Refine reconstruction and verification of meso-scale modeling of three-dimensional five-directional braided composites from X-ray computed tomography data[J]. Composite Structures, 2020, 245:112347.
doi: 10.1016/j.compstruct.2020.112347 |
[6] | 郭颖, 吴林志, 杨银环, 等. 三维六向编织复合材料拉伸性能的实验研究[J]. 宇航学报, 2012, 33(5):669-674. |
GUO Ying, WU Linzhi, YANG Yinhuan, et al. Experimental study on the tensile properties of three-dimensional six-directional braided composites[J]. Journal of Astronautics, 2012, 33(5):669-674. | |
[7] | 李鹏, 万振凯, 贾敏瑞. 基于碳纳米管纱线扭电能的复合材料损伤监测[J]. 纺织学报, 2020, 41(4):58-63. |
LI Peng, WAN Zhenkai, JIA Minrui. Damage monitoring of composite materials based on torsion energy of carbon nanotube yarns[J]. Journal of Textile Research, 2020, 41(4):58-63. | |
[8] |
XU K, QIAN X M, XU L M, et al. Microstructure analysis and solid unit cell modeling of three dimensionally six-directional braided composites[J]. Journal of Industrial Textiles, 2017, 46(5):1257-1280.
doi: 10.1177/1528083715619956 |
[9] |
GAO Y T, ZHOU H J, LIU M, et al. Mechanical and thermal properties of chemical vapor infiltration engineered 2D-woven and 3D-braided carbon silicate composites[J]. Ceramics International, 2015, 41(9):10949-10956.
doi: 10.1016/j.ceramint.2015.05.038 |
[10] |
ZHAO S, ZHOU X G, YU J, et al. Fabrication and characterization of 2.5D and 3D SiCf/SiC compo-sites[J]. Fusion Engineering and Design, 2013, 88(9/10):2453-2456.
doi: 10.1016/j.fusengdes.2013.04.002 |
[11] |
ZHANG X H, GAO H S, WEN Z X, et al. Effect of film cooling holes on the mechanical properties of 3D braided SiC/SiC composites at 1 350 ℃ in air[J]. Ceramics International, 2020, 46(6):7982-7990.
doi: 10.1016/j.ceramint.2019.12.020 |
[12] |
JING X, YANG X G, SHI D Q, et al. Tensile creep behavior of three-dimensional four-step braided SiC/SiC composite at elevated temperature[J]. Ceramics International, 2017, 43(9):6721-6729.
doi: 10.1016/j.ceramint.2017.02.076 |
[13] | 胡晓安, 张宇, 阳海棠, 等. 三维编织SiC/SiC复合材料拉伸和弯曲损伤机制[J]. 复合材料学报, 2019, 36(8):1879-1885. |
HU Xiaoan, ZHANG Yu, YANG Haitang, et al. Tension and bending damage mechanism of three-dimensional braided SiC/SiC composites[J]. Acta Materiae Compositae Sinica, 2019, 36(8):1879-1885. | |
[14] | 蒋丽娟, 侯振华, 周寅智. 预制体结构及界面对三维SiC/SiC复合材料拉伸性能的影响[J]. 复合材料学报, 2020, 37(3):642-649. |
JIANG Lijuan, HOU Zhenhua, ZHOU Yinzhi. Influence of preform structure and interface on tensile properties of three-dimensional SiC/SiC composites[J]. Acta Materiae Compositae Sinica, 2020, 37(3):642-649. | |
[15] |
HOU Z H, LUO R Y, YANG W, et al. Effect of fiber directionality on the static and dynamic mechanical properties of 3D SiCf/SiC composites[J]. Materials Science and Engineering: A, 2016, 658:263-271.
doi: 10.1016/j.msea.2016.02.006 |
[16] | 葛斌. PIP工艺制备KD-S SiCf/SiC复合材料结构及性能研究[D]. 长沙:国防科技大学, 2018:7-8. |
GE Bin. Research on the structure and properties of KD-S SiCf/SiC composite prepared by PIP process[D]. Changsha:National University of Defense Technology, 2018:7-8. | |
[17] |
LIAO J H, CHEN Z F, LI B B, et al. Microstructure and mechanical properties of C/SiC-Al composites fabricated by PIP and vacuum pressure infiltration processes[J]. Journal of Alloys and Compounds, 2019, 803:934-941.
doi: 10.1016/j.jallcom.2019.06.364 |
[18] | NANNETTI C A, RICCARDI B, ORTONA A, et al. Development of 2D and 3D Hi-nicalon fibres/SiC matrix composites manufactured by a combined CVI-PIP route[J]. Journal of Nuclear Materials, 2002, 307:1196-1199. |
[19] |
GYANENDER S, STEVE G, CHRISTIAN D, et al. Interlaboratory round robin study on axial tensile properties of SiC/SiC CMC tubular test specimens[J]. International Journal of Applied Ceramic Technology, 2018, 15(6):1334-1349.
doi: 10.1111/ijac.2018.15.issue-6 |
[20] | 庞宝琳, 焦健, 王宇, 等. 不同界面层体系对SiC/SiC复合材料性能的影响[J]. 航空制造技术, 2014, 57(6):79-82,85. |
PANG Baolin, JIAO Jian, WANG Yu, et al. The influence of different interface layer systems on the properties of SiC/SiC composites[J]. Aeronautical Manufacturing Technology, 2014, 57(6):79-82,85. | |
[21] | 张冰玉, 王岭, 焦健, 等. 界面层对SiCf/SiC复合材料力学性能及氧化行为的影响[J]. 航空制造技术, 2017, 60(12):78-83. |
ZHANG Bingyu, WANG Ling, JIAO Jian, et al. The effect of interface layer on the mechanical properties and oxidation behavior of SiCf/SiC composites[J]. Aeronautical Manufacturing Technology, 2017, 60(12):78-83. | |
[22] | 谢巍杰, 陈明伟. SiC/SiC复合材料高温力学性能研究[J]. 人工晶体学报, 2016, 45(6):1534-1538. |
XIE Weijie, CHEN Mingwei. Study on high temperature mechanical properties of SiC/SiC composites[J]. Journal of Synthetic Crystals, 2016, 45(6):1534-1538. | |
[23] | 包亦望, 金宗哲. 脆性材料弯曲强度与抗拉强度的关系研究[J]. 中国建筑材料科学研究院学报, 1991(3):1-5. |
BAO Yiwang, JIN Zongzhe. Study on the relationship between flexural strength and tensile strength of brittle materials[J]. Journal of China Building Materials Academy, 1991(3):1-5. | |
[24] |
SIEMERS P A, MEHAN R L, MORAN H. A comparison of the uniaxial tensile and pure bending strength of SiC filaments[J]. Journal of Materials Science, 1988, 23(4):1329-1333.
doi: 10.1007/BF01154597 |
[25] |
PARAMONOV Y, ANDERSONS J. A family of weakest link models for fiber strength distribution[J]. Composites Part A: Applied Science and Manufacturing, 2006, 38(4):1227-1233.
doi: 10.1016/j.compositesa.2006.06.004 |
[26] | 吴守军, 成来飞, 董宁, 等. 3D Hi-nicalon/SiC复合材料室温三点弯曲强度分布[J]. 复合材料学报, 2005, 22(5):130-133. |
WU Shoujun, CHENG Laifei, DONG Ning, et al. Three-point bending strength distribution of 3D Hi-nicalon/SiC composites at room temperature[J]. Acta Materiae Compositae Sinica, 2005, 22(5):130-133. |
[1] | 杨甜甜, 王岭, 邱海鹏, 王晓猛, 张典堂, 钱坤. 三维机织角联锁SiCf/SiC复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020, 41(12): 73-80. |
[2] | 万莉 郭建民 马永军. 三维编织复合材料弯曲承载下嵌入碳纳米线的特性分析[J]. 纺织学报, 2016, 37(01): 57-63. |
[3] | 王旭;晏雄. 聚乙烯自增强复合材料损伤行为的声发射特征[J]. 纺织学报, 2010, 31(3): 27-31. |
|