纺织学报 ›› 2021, Vol. 42 ›› Issue (12): 81-89.doi: 10.13475/j.fzxb.20210300309

• 纺织工程 • 上一篇    下一篇

三维六向编织SiCf/SiC复合材料的力学行为及其损伤机制

袁琼1, 邱海鹏2, 谢巍杰2, 王岭2, 王晓猛2, 张典堂1(), 钱坤1   

  1. 1.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
    2.航空工业复合材料技术中心, 北京 101300
  • 收稿日期:2021-03-01 修回日期:2021-08-09 出版日期:2021-12-15 发布日期:2021-12-29
  • 通讯作者: 张典堂
  • 作者简介:袁琼(1994—),女,硕士生。主要研究方向为陶瓷基复合材料。
  • 基金资助:
    国家科技重大专项资助项目(2017_VI_0007_0076);国家自然科学基金项目(11702115);国家自然科学基金项目(12072131);江苏省自然科学基金项目(BK20170166);军委科技委基础强化项目(2014_JCJQ_ZD_035);江苏省研究生科研与创新计划项目(SJCX20_0754)

Mechanical properties and damage mechanism of three-dimensional six-directional braided SiCf/SiC composites

YUAN Qiong1, QIU Haipeng2, XIE Weijie2, WANG Ling2, WANG Xiaomeng2, ZHANG Diantang1(), QIAN Kun1   

  1. 1. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. Aerospace Composites Technology Center, Beijing 101300, China
  • Received:2021-03-01 Revised:2021-08-09 Published:2021-12-15 Online:2021-12-29
  • Contact: ZHANG Diantang

摘要:

为解决陶瓷基复合材料在服役过程中因拉伸和弯曲导致的失效问题,以三维六向编织SiCf/SiC复合材料为研究对象,分析了受力过程中复合材料力学行为与纤维及结构的联系机制。采用微计算机断层扫描技术获得材料结构及孔隙的三维图像,对复合材料纵向和横向进行拉伸、弯曲性能测试,并阐明其损伤机制。结果表明:复合材料呈现明显的各向异性特性,纵向拉伸强度和弯曲强度分别是横向的10.37、5.06倍;复合材料不同方向受力的损伤模式不同,拉伸载荷下纵向试样裂纹沿着六向纱呈Z字形扩展,而横向试样裂纹沿着编织轴向扩展,最终导致拉伸破坏;弯曲载荷下裂纹沿着厚度方向扩展,并最终导致纵向及横向试样的韧性断裂,且纵向韧性优于横向。

关键词: 三维六向编织物, SiCf/SiC复合材料, 复合材料失效, 单轴拉伸, 三点弯曲测试, 损伤机制

Abstract:

Aiming at the failure of ceramic matrix composites upon tensile and bending loading during service, the three-dimensional six-directional braided SiCf/SiC composites were investigated, and the mechanism of the mechanical properties of the composites and the relationship between the fiber and structure during the stress process was analyzed. Microcomputer tomography technology was used to obtain three-dimensional images of the material structure and pores, and the longitudinal and transverse tensile/bending properties of the composite material were tested, and the damage mechanism was discussed. The results show that the three-dimensional six-directional braided SiCf/SiC composites exhibit obvious anisotropic characteristics, and the longitudinal tensile and bending strength is 10.37 and 5.06 times that in the transverse direction, respectively. The damage modes of the composites under different forces were found to be different. Under tensile loading, the longitudinal cracks expand along a zigzag route formed by the six-direction yarns, while the transverse cracks expand along the braid axis, resulting in tensile failure. Under bending loading, the cracks expand along the thickness direction and finally cause the ductile fracture in the longitudinal and transverse directions, and the longitudinal toughness was found better than the transverse toughness.

Key words: three-dimensional six-directional braided fabric, SiCf/SiC composite, composite failure, uniaxial tensile, three-point bending test, damage mechanism

中图分类号: 

  • TB332

图1

三维六向编织预制体形态"

图2

三维六向编织SiCf/SiC复合材料形貌"

图3

三维六向编织SiCf/SiC复合材料纵向和横向拉伸应力-应变曲线"

表1

三维六向编织SiCf/SiC复合材料拉伸力学性能"

试样方向 拉伸强度/MPa 拉伸模量/GPa 断裂应变/%
纵向 243.29±44.71 265.87±10.08 0.30±0.17
横向 23.45±3.22 28.39±9.61 0.26±0.07

图4

纵向SiCf/SiC复合材料拉伸损伤形貌"

图5

横向SiCf/SiC复合材料拉伸损伤形貌"

图6

SiCf/SiC复合材料纵向和横向拉伸受力图"

图7

三维六向编织SiCf/SiC复合材料纵向和横向弯曲应力-挠度曲线"

表2

三维六向编织SiCf/SiC复合材料弯曲力学性能"

试样方向 弯曲强度/MPa 弯曲模量/GPa 断裂挠度/mm
纵向 469.76±37.22 117.31±38.44 0.49±0.01
横向 92.90±13.51 80.81±12.52 0.30±0.03

图8

纵向SiCf/SiC复合材料弯曲损伤形貌"

图9

横向SiCf/SiC复合材料弯曲损伤形貌"

图10

三点弯曲加载示意图及SiCf/SiC复合材料纵向和横向弯曲受力图"

表3

SiCf/SiC三维六向编织复合材料拉伸/弯曲关系"

试样方向 拉伸强度/
MPa
弯曲强度/
MPa
拉伸/弯曲
强度比
弯曲试样
体积/cm3
拉伸试样标距
段体积/cm3
m
纵向 243.29±44.71 469.76±37.22 0.52 3 000 1 250 5.3
横向 23.45±3.22 92.90±13.51 0.25 3 000 1 250 0.6
[1] 张立同, 成来飞, 徐永东. 新型碳化硅陶瓷基复合材料的研究进展[J]. 航空制造技术, 2003(1):24-32.
ZHANG Litong, CHENG Laifei, XU Yongdong. Res-earch progress of new silicon carbide ceramic matrix composites[J]. Aeronautical Manufacturing Technology, 2003(1):24-32.
[2] WANG P R, LIU F Q, WANG H, et al. A review of third generation SiC fibers and SiC/SiC composites[J]. Journal of Materials Science & Technology, 2019, 35(12):2743-2750.
[3] 杨甜甜, 王岭, 邱海鹏, 等. 三维机织角联锁SiCf/SiC复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020, 41(12):73-80.
YANG Tiantian, WANG Ling, QIU Haipeng, et al. Three-dimensional woven corner interlocking SiCf/SiC composite material bending performance and damage mechanism[J]. Journal of Textile Research, 2020, 41(12):73-80.
[4] 赵陈伟, 毛军逵, 屠泽灿, 等. 纤维增韧陶瓷基复合材料热端部件的热分析方法现状和展望[J]. 航空学报, 2021, 42(6):136-161.
ZHAO Chenwei, MAO Junkui, TU Zecan, et al. Current status and prospects of thermal analysis methods for fiber-toughened ceramic matrix composite hot-end parts[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6):136-161.
[5] LIU X D, ZHANG D T, SUN J, et al. Refine reconstruction and verification of meso-scale modeling of three-dimensional five-directional braided composites from X-ray computed tomography data[J]. Composite Structures, 2020, 245:112347.
doi: 10.1016/j.compstruct.2020.112347
[6] 郭颖, 吴林志, 杨银环, 等. 三维六向编织复合材料拉伸性能的实验研究[J]. 宇航学报, 2012, 33(5):669-674.
GUO Ying, WU Linzhi, YANG Yinhuan, et al. Experimental study on the tensile properties of three-dimensional six-directional braided composites[J]. Journal of Astronautics, 2012, 33(5):669-674.
[7] 李鹏, 万振凯, 贾敏瑞. 基于碳纳米管纱线扭电能的复合材料损伤监测[J]. 纺织学报, 2020, 41(4):58-63.
LI Peng, WAN Zhenkai, JIA Minrui. Damage monitoring of composite materials based on torsion energy of carbon nanotube yarns[J]. Journal of Textile Research, 2020, 41(4):58-63.
[8] XU K, QIAN X M, XU L M, et al. Microstructure analysis and solid unit cell modeling of three dimensionally six-directional braided composites[J]. Journal of Industrial Textiles, 2017, 46(5):1257-1280.
doi: 10.1177/1528083715619956
[9] GAO Y T, ZHOU H J, LIU M, et al. Mechanical and thermal properties of chemical vapor infiltration engineered 2D-woven and 3D-braided carbon silicate composites[J]. Ceramics International, 2015, 41(9):10949-10956.
doi: 10.1016/j.ceramint.2015.05.038
[10] ZHAO S, ZHOU X G, YU J, et al. Fabrication and characterization of 2.5D and 3D SiCf/SiC compo-sites[J]. Fusion Engineering and Design, 2013, 88(9/10):2453-2456.
doi: 10.1016/j.fusengdes.2013.04.002
[11] ZHANG X H, GAO H S, WEN Z X, et al. Effect of film cooling holes on the mechanical properties of 3D braided SiC/SiC composites at 1 350 ℃ in air[J]. Ceramics International, 2020, 46(6):7982-7990.
doi: 10.1016/j.ceramint.2019.12.020
[12] JING X, YANG X G, SHI D Q, et al. Tensile creep behavior of three-dimensional four-step braided SiC/SiC composite at elevated temperature[J]. Ceramics International, 2017, 43(9):6721-6729.
doi: 10.1016/j.ceramint.2017.02.076
[13] 胡晓安, 张宇, 阳海棠, 等. 三维编织SiC/SiC复合材料拉伸和弯曲损伤机制[J]. 复合材料学报, 2019, 36(8):1879-1885.
HU Xiaoan, ZHANG Yu, YANG Haitang, et al. Tension and bending damage mechanism of three-dimensional braided SiC/SiC composites[J]. Acta Materiae Compositae Sinica, 2019, 36(8):1879-1885.
[14] 蒋丽娟, 侯振华, 周寅智. 预制体结构及界面对三维SiC/SiC复合材料拉伸性能的影响[J]. 复合材料学报, 2020, 37(3):642-649.
JIANG Lijuan, HOU Zhenhua, ZHOU Yinzhi. Influence of preform structure and interface on tensile properties of three-dimensional SiC/SiC composites[J]. Acta Materiae Compositae Sinica, 2020, 37(3):642-649.
[15] HOU Z H, LUO R Y, YANG W, et al. Effect of fiber directionality on the static and dynamic mechanical properties of 3D SiCf/SiC composites[J]. Materials Science and Engineering: A, 2016, 658:263-271.
doi: 10.1016/j.msea.2016.02.006
[16] 葛斌. PIP工艺制备KD-S SiCf/SiC复合材料结构及性能研究[D]. 长沙:国防科技大学, 2018:7-8.
GE Bin. Research on the structure and properties of KD-S SiCf/SiC composite prepared by PIP process[D]. Changsha:National University of Defense Technology, 2018:7-8.
[17] LIAO J H, CHEN Z F, LI B B, et al. Microstructure and mechanical properties of C/SiC-Al composites fabricated by PIP and vacuum pressure infiltration processes[J]. Journal of Alloys and Compounds, 2019, 803:934-941.
doi: 10.1016/j.jallcom.2019.06.364
[18] NANNETTI C A, RICCARDI B, ORTONA A, et al. Development of 2D and 3D Hi-nicalon fibres/SiC matrix composites manufactured by a combined CVI-PIP route[J]. Journal of Nuclear Materials, 2002, 307:1196-1199.
[19] GYANENDER S, STEVE G, CHRISTIAN D, et al. Interlaboratory round robin study on axial tensile properties of SiC/SiC CMC tubular test specimens[J]. International Journal of Applied Ceramic Technology, 2018, 15(6):1334-1349.
doi: 10.1111/ijac.2018.15.issue-6
[20] 庞宝琳, 焦健, 王宇, 等. 不同界面层体系对SiC/SiC复合材料性能的影响[J]. 航空制造技术, 2014, 57(6):79-82,85.
PANG Baolin, JIAO Jian, WANG Yu, et al. The influence of different interface layer systems on the properties of SiC/SiC composites[J]. Aeronautical Manufacturing Technology, 2014, 57(6):79-82,85.
[21] 张冰玉, 王岭, 焦健, 等. 界面层对SiCf/SiC复合材料力学性能及氧化行为的影响[J]. 航空制造技术, 2017, 60(12):78-83.
ZHANG Bingyu, WANG Ling, JIAO Jian, et al. The effect of interface layer on the mechanical properties and oxidation behavior of SiCf/SiC composites[J]. Aeronautical Manufacturing Technology, 2017, 60(12):78-83.
[22] 谢巍杰, 陈明伟. SiC/SiC复合材料高温力学性能研究[J]. 人工晶体学报, 2016, 45(6):1534-1538.
XIE Weijie, CHEN Mingwei. Study on high temperature mechanical properties of SiC/SiC composites[J]. Journal of Synthetic Crystals, 2016, 45(6):1534-1538.
[23] 包亦望, 金宗哲. 脆性材料弯曲强度与抗拉强度的关系研究[J]. 中国建筑材料科学研究院学报, 1991(3):1-5.
BAO Yiwang, JIN Zongzhe. Study on the relationship between flexural strength and tensile strength of brittle materials[J]. Journal of China Building Materials Academy, 1991(3):1-5.
[24] SIEMERS P A, MEHAN R L, MORAN H. A comparison of the uniaxial tensile and pure bending strength of SiC filaments[J]. Journal of Materials Science, 1988, 23(4):1329-1333.
doi: 10.1007/BF01154597
[25] PARAMONOV Y, ANDERSONS J. A family of weakest link models for fiber strength distribution[J]. Composites Part A: Applied Science and Manufacturing, 2006, 38(4):1227-1233.
doi: 10.1016/j.compositesa.2006.06.004
[26] 吴守军, 成来飞, 董宁, 等. 3D Hi-nicalon/SiC复合材料室温三点弯曲强度分布[J]. 复合材料学报, 2005, 22(5):130-133.
WU Shoujun, CHENG Laifei, DONG Ning, et al. Three-point bending strength distribution of 3D Hi-nicalon/SiC composites at room temperature[J]. Acta Materiae Compositae Sinica, 2005, 22(5):130-133.
[1] 杨甜甜, 王岭, 邱海鹏, 王晓猛, 张典堂, 钱坤. 三维机织角联锁SiCf/SiC复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020, 41(12): 73-80.
[2] 万莉 郭建民 马永军. 三维编织复合材料弯曲承载下嵌入碳纳米线的特性分析[J]. 纺织学报, 2016, 37(01): 57-63.
[3] 王旭;晏雄. 聚乙烯自增强复合材料损伤行为的声发射特征[J]. 纺织学报, 2010, 31(3): 27-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[2] 刘从九. 我国纺织品绿色国际竞争力[J]. 纺织学报, 2004, 25(02): 116 -118 .
[3] 姚玉元;陈文兴;张利;潘勇. 催化氧化型消臭蚕丝纤维的研究[J]. 纺织学报, 2004, 25(03): 7 -8 .
[4] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[5] 王菊萍;殷佳敏;彭兆清;张峰. 活性染料染色织物超声波酶洗工艺[J]. 纺织学报, 2006, 27(1): 93 -95 .
[6] 罗军;费万春. 生丝中各层次茧丝数的概率分布[J]. 纺织学报, 2006, 27(2): 1 -4 .
[7] 马晓光;崔桂新;董绍伟. 微波等离子体引发接枝凝胶型智能棉针织品[J]. 纺织学报, 2006, 27(2): 13 -16 .
[8] 万振凯;李静东. 三维编织复合材料压缩损伤声发射特性分析[J]. 纺织学报, 2006, 27(2): 20 -24 .
[9] 包晓敏;汪亚明. 基于最小风险贝叶斯决策的织物图像分割[J]. 纺织学报, 2006, 27(2): 33 -36 .
[10] 江影;刘国联. 消费者对T恤衫形象的感性需求调研分析[J]. 纺织学报, 2006, 27(2): 98 -100 .