纺织学报 ›› 2022, Vol. 43 ›› Issue (01): 1-8.doi: 10.13475/j.fzxb.20210907508

• 纤维材料 •    下一篇

纯生物质纤维素气凝胶的制备及其阻燃性能

骆晓蕾1, 刘琳2, 姚菊明2,3()   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江理工大学材料科学与工程学院, 浙江 杭州 310018
    3.宁波大学 材料科学与化学工程学院, 浙江 宁波 315211
  • 收稿日期:2021-09-23 修回日期:2021-11-03 出版日期:2022-01-15 发布日期:2022-01-28
  • 通讯作者: 姚菊明
  • 作者简介:骆晓蕾(1992—),女,博士生。主要研究方向为生物质高分子阻燃材料。
  • 基金资助:
    浙江省“万人计划”科技创新领军人才项目(2018R52002);国家自然科学基金委面上项目(51672251);浙江理工大学优秀研究生学位论文培育基金项目(LW-YP2020005)

Preparation and study of pure biomass cellulose aerogels for flame retardancy

LUO Xiaolei1, LIU Lin2, YAO Juming2,3()   

  1. 1. College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University,Hangzhou, Zhejiang 310018, China
    2. School of Materials Science & Engineering, Zhejiang Sci-Tech University,Hangzhou, Zhejiang 310018, China
    3. School of Materials Science and Chemical Engineering, Ningbo University,Ningbo, Zhejiang 315211, China
  • Received:2021-09-23 Revised:2021-11-03 Published:2022-01-15 Online:2022-01-28
  • Contact: YAO Juming

摘要:

为有效推进纺织领域资源循环利用、增强绿色低碳循环发展,以废棉纱为原料制备再生纤维素气凝胶,并在水相环境驱动下,将浸提自废弃农林作物的生物质茶多酚沉积于该气凝胶表面,开发纯生物质节能保温用阻燃纤维素气凝胶(BTCA),并分别采用极限氧指数仪、热重分析、热重红外联用仪、拉曼光谱等分析了BTCA的热稳定性、热分解气固相产物及阻燃机制等。结果表明:生物质茶多酚类沉积物具有优异的抗氧化能力,并可促进纤维素分子链的脱水碳化,实现固相阻燃,使得纤维素的热稳定性显著提升,其极限氧指数高达32.7%,且能离火自熄。

关键词: 废棉纺织品, 全生物质阻燃, 纤维素气凝胶, 茶多酚, 阻燃性能

Abstract:

In order to recycle textiles and enhance the green and low-carbon circular development, regenerated cellulose aerogels were prepared from waste cotton yarns, and the biomass tea polyphenol extracted from agricultural and forestry waste was deposited on the aerogel surface under the driving of water environment. The flame retardant cellulose aerogel (BTCA) was developed for pure biomass energy saving and heat preservation. The flame retardancy, thermal stability, thermal decomposition vapor and solid products, and flame retardant mechanism of BTCA were studied and analyzed by limiting oxygen index method, thermogravimetric analysis, thermogravimetric infrared spectroscopy and Raman spectroscopy. Because the biomass tea polyphenol deposits have an excellent antioxidant capacity, it can promote the dehydration and carbonization of cellulose molecular chain at the same time. Based on this, solid-phase flame retardant was achieved, and their thermal stability has been significantly improved. The limit oxygen index was as high as 32.7% and the cellulose aerogel could self-extinguish when leaving the flame.

Key words: waste cotton textiles, total biomass flame retardance, cellulose aerogel, tea polyphenol, flame retardancy

中图分类号: 

  • TS195

图1

CA与BTCA-2.5/5的微观结构照片"

图2

材料的化学结构分析"

图3

空气及氮气气氛下CA及BTCA-2.5/5的TG及DTG曲线"

表1

CA及BTCA-2.5/5热稳定分析相关数据表"

样品 气氛 T10%/℃ T75%/℃ Vmax1/(%·min-1) Vmax2/(%·min-1) TVmax1/℃ TVmax2/℃ 残余比/%
CA 空气 252.39 402.79 -17.37 -6.81 340.39 457.99
氮气 257.28 388.48 -13.49 320.24 13.07
BTCA-2.5/5 空气 257.19 471.59 -9.93 -10.08 335.49 561.84
氮气 262.88 -10.89 332.79 28.86

图4

BTCA的LOI值随条件变化的柱状图"

图5

CA与BTCA-2.5/5燃烧现象"

图6

CA与BTCA-2.5/5的TG-FT-IR谱图"

图7

炭渣的SEM照片和拉曼及红外光谱"

[1] 李德利, 刘世扬, 贺燕丽. 我国废旧纺织品资源循环再利用简况[J]. 高科技纤维与应用, 2021, 46(2): 11-14.
LI Deli, LIU Shiyang, HE Yanli. Briefing on recycling and reuse of waste textile resources in China[J]. Hi-Tech Fiber and Application, 2021, 46(2): 11-14.
[2] 程丹. 基于碱/尿纤维素溶液的功能材料[D]. 武汉: 武汉大学, 2018: 1-61.
CHENG Dan. Functional cellulose materials based on aqueous alkali hydroxide/urea solution[D]. Wuhan: Wuhan University, 2018: 1-61.
[3] 张婷婷, 许可欣, 金梦甜, 等. 纤维素基有机-无机纳米光催化复合材料制备及其水处理应用的研究进展[J]. 纺织学报, 2021, 42(7): 175-183.
ZHANG Tingting, XU Kexin, JIN Mengtian, et al. Rencnet progress in preparation of cellulose-based organic-inorganic photocatalysts nanohybrids and it's application in water treatment[J]. Journal of Textile Research, 2021, 42(7): 175-183.
doi: 10.1177/004051757204200309
[4] SUN J M, WU Z W, AN B, et al. Thermal-insulating, flame-retardant and mechanically resistant aerogel based on bio-inspired tubular cellulose[J]. Composites Part B, 2021.DOI: 10.1016/j.compositesb.2021.108997.
doi: 10.1016/j.compositesb.2021.108997
[5] LI C Q, XU H, GAO J K, et al. Tunable titanium metal-organic frameworks with infinite 1D Ti-O rods for efficient visble-light-driven photocatalytic H2 evolution[J]. Journal of Materials Chemistry A, 2019, 7(19): 11928-11933.
doi: 10.1039/C9TA01942A
[6] GUAN Q F, HAN Z M, YANG K P, et al. Sustainable double-network structural materails for electromagnetic shielding[J]. Nano Letters, 2021, 21(6): 2532-2537.
[7] WANG D, PENG H Y, YU B, et al. Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame-retardant and thermal-insulating properties[J]. Chemical Engineering Journal, 2020.DOI: 10.1016/j.cej.2020.124449.
doi: 10.1016/j.cej.2020.124449
[8] ZHOU S Y, VARVARA A K, Marcus V T C, et al. Elastic aerogels of cellulose nanofibers@metal-organic frameworks for thermal insulation and fire retardan-cy[J]. Nano-Micro Letter, 2020.DOI: 10.1007/s40820-019-0343-4.
doi: 10.1007/s40820-019-0343-4
[9] WANG D, PENG H Y, YU B, et al. Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame-retardant and thermal-insulating properties[J]. Chemical Engineering Journal, 2020.DOI: 10.1016/j.cej.2020.124449.
doi: 10.1016/j.cej.2020.124449
[10] CHENG T H, LIU Z J, YANG J Y, et al. Extraction of functional dyes from tea stem waste in alkaline medium and their application for simultaneous coloration and flame retardant and bioactive functionalization of silk[J]. ACS Sustainable Chemistry & Engineering, 2019, 7:18405-18413.
[11] 姚奉奇. 茶叶多酚类衍生物热解和氧化特性及其反应机制[D]. 合肥: 中国科学技术大学, 2018: 1-62.
YAO Fengqi. Study on pyrolysis, oxidation behavior and associated reaction mechanism of tea polyphenol derivatives[D]. Hefei: University of Science and Technology of China, 2018: 1-62.
[12] RYAN J S, KEVIN M H, SOFIA R, et al. Environmentally benign halloysite nanotube multilayer assembly significantly reduces polyurethane flamm-ability[J]. Advanced Functional Materials, 2018.DOI: 10.1002/adfm.201703289.
doi: 10.1002/adfm.201703289
[13] 杨子银. 茶(红茶)与茶(camellia sinensis)花多酚类物质的分离鉴定及其抗氧化机制研究[D]. 杭州: 浙江大学, 2007: 1-52.
YANG Ziyin. Isolation, identification of polyphonels in black tea and tea (camellia sinensis) flower and studies on their antioxidant function and mechanism[D]. Hangzhou: Zhejiang University, 2007: 1-52.
[14] CHEN L M, LIAO Y F, GUO Z G, et al. Products distribution and generation pathway of cellulose pyrolysis[J]. Journal of Cleaner Production, 2019, 232:1309-1320.
doi: 10.1016/j.jclepro.2019.06.026
[15] LUCIE C, FOUAD L, SYLVAIN B, et al. Bio-based flame retardants: when nature meets fire protection[J]. Materials Science and Engineering R, 2017, 117:1-25.
doi: 10.1016/j.mser.2017.04.001
[16] LIU B, XU Y, PAN Y, et al. Facile synjournal of an efficient phosphonamide flame retardant for simultaneous enhancement of fire safety and crystallization rate of poly(lactic acid)[J]. Chemical Engineering Journal, 2021.DOI: 10.1016/j.cej.2020.127761.
doi: 10.1016/j.cej.2020.127761
[17] 杨晓晓. 基于典型产物的纤维素快速热解机制研究及模型构建[D]. 北京: 北京林业大学, 2020: 1-88.
YANG Xiaoxiao. Mechanism research and modelling of cellulose fast pyrolysis based on the typical products[D]. Beijing: Beijing Forestry University, 2020: 1-88.
[18] WAN C Y, LIU M S, TIAN P H, et al. Renewable vitamin B5 reactive N-P flame retardant endows cotton with excellent fire resistance and durability[J]. Cellulose, 2020, 27:1745-1761.
doi: 10.1007/s10570-019-02886-z
[1] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[2] 林生根, 刘晓辉, 苏晓伟, 何聚, 任元林. 新型植酸基阻燃剂改性Lyocell纤维与织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 25-30.
[3] 文玉峰, 马晓谱, 盛方园, 朱志国. 微胶囊化膨胀型阻燃剂的制备及其在聚乳酸中的应用[J]. 纺织学报, 2021, 42(06): 71-77.
[4] 王华清, 闫红强. 生物基三组分自组装涂层构筑及其对苎麻织物的阻燃改性[J]. 纺织学报, 2021, 42(04): 132-138.
[5] 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111.
[6] 马君志, 葛红, 王冬, 付少海. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(01): 10-15.
[7] 许黛芳. 磷酸改性芳纶对聚氨酯硬质泡沫阻燃抑烟性能的影响[J]. 纺织学报, 2020, 41(05): 30-37.
[8] 党丹旸, 崔灵燕, 王亮, 刘雍. 纤维素纳米纤维/纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(02): 1-6.
[9] 莫达杰, 李旭明, 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能[J]. 纺织学报, 2019, 40(05): 12-17.
[10] 张安莹, 王照颖, 王锐, 董振峰, 魏丽菲, 王德义. 阻燃聚左旋乳酸及其纤维的制备与结构性能[J]. 纺织学报, 2019, 40(04): 7-14.
[11] 赵青华, 毛秦岑, 梅涛, 牛应买, 王栋. 阻燃剂对聚氯乙烯/聚酯复合材料性能的影响[J]. 纺织学报, 2019, 40(01): 103-107.
[12] 刘婷 张安莹 王锐 董振峰 朱志国 王照颖. 季戊四醇磷酸酯/二乙基次磷酸锌协同阻燃聚酰胺6的制备及其性能 [J]. 纺织学报, 2018, 39(09): 8-14.
[13] 邓继勇 柳芊 董新理 汪南方. 新型氮-磷阻燃剂制备及其对棉织物的阻燃性能[J]. 纺织学报, 2017, 38(11): 97-101.
[14] 陈威 关晋平 陈国强 匡小慧. 静电层层自组装法整理多巴胺改性涤/棉混纺织物的阻燃性能[J]. 纺织学报, 2017, 38(09): 94-100.
[15] 张瑞萍 张葛成 孟令阔. 茶多酚对棉织物的吸附及其抗菌消臭效果[J]. 纺织学报, 2017, 38(01): 100-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[3] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[4] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[5] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[6] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[7] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[8] 姚玉元;陈文兴;张利;潘勇. 催化氧化型消臭蚕丝纤维的研究[J]. 纺织学报, 2004, 25(03): 7 -8 .
[9] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[10] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .