纺织学报 ›› 2022, Vol. 43 ›› Issue (01): 1-8.doi: 10.13475/j.fzxb.20210907508
• 纤维材料 • 下一篇
LUO Xiaolei1, LIU Lin2, YAO Juming2,3()
摘要:
为有效推进纺织领域资源循环利用、增强绿色低碳循环发展,以废棉纱为原料制备再生纤维素气凝胶,并在水相环境驱动下,将浸提自废弃农林作物的生物质茶多酚沉积于该气凝胶表面,开发纯生物质节能保温用阻燃纤维素气凝胶(BTCA),并分别采用极限氧指数仪、热重分析、热重红外联用仪、拉曼光谱等分析了BTCA的热稳定性、热分解气固相产物及阻燃机制等。结果表明:生物质茶多酚类沉积物具有优异的抗氧化能力,并可促进纤维素分子链的脱水碳化,实现固相阻燃,使得纤维素的热稳定性显著提升,其极限氧指数高达32.7%,且能离火自熄。
中图分类号:
[1] | 李德利, 刘世扬, 贺燕丽. 我国废旧纺织品资源循环再利用简况[J]. 高科技纤维与应用, 2021, 46(2): 11-14. |
LI Deli, LIU Shiyang, HE Yanli. Briefing on recycling and reuse of waste textile resources in China[J]. Hi-Tech Fiber and Application, 2021, 46(2): 11-14. | |
[2] | 程丹. 基于碱/尿纤维素溶液的功能材料[D]. 武汉: 武汉大学, 2018: 1-61. |
CHENG Dan. Functional cellulose materials based on aqueous alkali hydroxide/urea solution[D]. Wuhan: Wuhan University, 2018: 1-61. | |
[3] | 张婷婷, 许可欣, 金梦甜, 等. 纤维素基有机-无机纳米光催化复合材料制备及其水处理应用的研究进展[J]. 纺织学报, 2021, 42(7): 175-183. |
ZHANG Tingting, XU Kexin, JIN Mengtian, et al. Rencnet progress in preparation of cellulose-based organic-inorganic photocatalysts nanohybrids and it's application in water treatment[J]. Journal of Textile Research, 2021, 42(7): 175-183.
doi: 10.1177/004051757204200309 |
|
[4] |
SUN J M, WU Z W, AN B, et al. Thermal-insulating, flame-retardant and mechanically resistant aerogel based on bio-inspired tubular cellulose[J]. Composites Part B, 2021.DOI: 10.1016/j.compositesb.2021.108997.
doi: 10.1016/j.compositesb.2021.108997 |
[5] |
LI C Q, XU H, GAO J K, et al. Tunable titanium metal-organic frameworks with infinite 1D Ti-O rods for efficient visble-light-driven photocatalytic H2 evolution[J]. Journal of Materials Chemistry A, 2019, 7(19): 11928-11933.
doi: 10.1039/C9TA01942A |
[6] | GUAN Q F, HAN Z M, YANG K P, et al. Sustainable double-network structural materails for electromagnetic shielding[J]. Nano Letters, 2021, 21(6): 2532-2537. |
[7] |
WANG D, PENG H Y, YU B, et al. Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame-retardant and thermal-insulating properties[J]. Chemical Engineering Journal, 2020.DOI: 10.1016/j.cej.2020.124449.
doi: 10.1016/j.cej.2020.124449 |
[8] |
ZHOU S Y, VARVARA A K, Marcus V T C, et al. Elastic aerogels of cellulose nanofibers@metal-organic frameworks for thermal insulation and fire retardan-cy[J]. Nano-Micro Letter, 2020.DOI: 10.1007/s40820-019-0343-4.
doi: 10.1007/s40820-019-0343-4 |
[9] |
WANG D, PENG H Y, YU B, et al. Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame-retardant and thermal-insulating properties[J]. Chemical Engineering Journal, 2020.DOI: 10.1016/j.cej.2020.124449.
doi: 10.1016/j.cej.2020.124449 |
[10] | CHENG T H, LIU Z J, YANG J Y, et al. Extraction of functional dyes from tea stem waste in alkaline medium and their application for simultaneous coloration and flame retardant and bioactive functionalization of silk[J]. ACS Sustainable Chemistry & Engineering, 2019, 7:18405-18413. |
[11] | 姚奉奇. 茶叶多酚类衍生物热解和氧化特性及其反应机制[D]. 合肥: 中国科学技术大学, 2018: 1-62. |
YAO Fengqi. Study on pyrolysis, oxidation behavior and associated reaction mechanism of tea polyphenol derivatives[D]. Hefei: University of Science and Technology of China, 2018: 1-62. | |
[12] |
RYAN J S, KEVIN M H, SOFIA R, et al. Environmentally benign halloysite nanotube multilayer assembly significantly reduces polyurethane flamm-ability[J]. Advanced Functional Materials, 2018.DOI: 10.1002/adfm.201703289.
doi: 10.1002/adfm.201703289 |
[13] | 杨子银. 茶(红茶)与茶(camellia sinensis)花多酚类物质的分离鉴定及其抗氧化机制研究[D]. 杭州: 浙江大学, 2007: 1-52. |
YANG Ziyin. Isolation, identification of polyphonels in black tea and tea (camellia sinensis) flower and studies on their antioxidant function and mechanism[D]. Hangzhou: Zhejiang University, 2007: 1-52. | |
[14] |
CHEN L M, LIAO Y F, GUO Z G, et al. Products distribution and generation pathway of cellulose pyrolysis[J]. Journal of Cleaner Production, 2019, 232:1309-1320.
doi: 10.1016/j.jclepro.2019.06.026 |
[15] |
LUCIE C, FOUAD L, SYLVAIN B, et al. Bio-based flame retardants: when nature meets fire protection[J]. Materials Science and Engineering R, 2017, 117:1-25.
doi: 10.1016/j.mser.2017.04.001 |
[16] |
LIU B, XU Y, PAN Y, et al. Facile synjournal of an efficient phosphonamide flame retardant for simultaneous enhancement of fire safety and crystallization rate of poly(lactic acid)[J]. Chemical Engineering Journal, 2021.DOI: 10.1016/j.cej.2020.127761.
doi: 10.1016/j.cej.2020.127761 |
[17] | 杨晓晓. 基于典型产物的纤维素快速热解机制研究及模型构建[D]. 北京: 北京林业大学, 2020: 1-88. |
YANG Xiaoxiao. Mechanism research and modelling of cellulose fast pyrolysis based on the typical products[D]. Beijing: Beijing Forestry University, 2020: 1-88. | |
[18] |
WAN C Y, LIU M S, TIAN P H, et al. Renewable vitamin B5 reactive N-P flame retardant endows cotton with excellent fire resistance and durability[J]. Cellulose, 2020, 27:1745-1761.
doi: 10.1007/s10570-019-02886-z |
[1] | 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171. |
[2] | 林生根, 刘晓辉, 苏晓伟, 何聚, 任元林. 新型植酸基阻燃剂改性Lyocell纤维与织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 25-30. |
[3] | 文玉峰, 马晓谱, 盛方园, 朱志国. 微胶囊化膨胀型阻燃剂的制备及其在聚乳酸中的应用[J]. 纺织学报, 2021, 42(06): 71-77. |
[4] | 王华清, 闫红强. 生物基三组分自组装涂层构筑及其对苎麻织物的阻燃改性[J]. 纺织学报, 2021, 42(04): 132-138. |
[5] | 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111. |
[6] | 马君志, 葛红, 王冬, 付少海. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(01): 10-15. |
[7] | 许黛芳. 磷酸改性芳纶对聚氨酯硬质泡沫阻燃抑烟性能的影响[J]. 纺织学报, 2020, 41(05): 30-37. |
[8] | 党丹旸, 崔灵燕, 王亮, 刘雍. 纤维素纳米纤维/纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(02): 1-6. |
[9] | 莫达杰, 李旭明, 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能[J]. 纺织学报, 2019, 40(05): 12-17. |
[10] | 张安莹, 王照颖, 王锐, 董振峰, 魏丽菲, 王德义. 阻燃聚左旋乳酸及其纤维的制备与结构性能[J]. 纺织学报, 2019, 40(04): 7-14. |
[11] | 赵青华, 毛秦岑, 梅涛, 牛应买, 王栋. 阻燃剂对聚氯乙烯/聚酯复合材料性能的影响[J]. 纺织学报, 2019, 40(01): 103-107. |
[12] | 刘婷 张安莹 王锐 董振峰 朱志国 王照颖. 季戊四醇磷酸酯/二乙基次磷酸锌协同阻燃聚酰胺6的制备及其性能 [J]. 纺织学报, 2018, 39(09): 8-14. |
[13] | 邓继勇 柳芊 董新理 汪南方. 新型氮-磷阻燃剂制备及其对棉织物的阻燃性能[J]. 纺织学报, 2017, 38(11): 97-101. |
[14] | 陈威 关晋平 陈国强 匡小慧. 静电层层自组装法整理多巴胺改性涤/棉混纺织物的阻燃性能[J]. 纺织学报, 2017, 38(09): 94-100. |
[15] | 张瑞萍 张葛成 孟令阔. 茶多酚对棉织物的吸附及其抗菌消臭效果[J]. 纺织学报, 2017, 38(01): 100-104. |
|