纺织学报 ›› 2022, Vol. 43 ›› Issue (01): 172-177.doi: 10.13475/j.fzxb.20210910706

• 染整与化学品 • 上一篇    下一篇

棉基Ti3C2Tx油水分离膜的制备及其性能

高强, 王晓(), 郭亚杰, 陈茹, 魏菊   

  1. 大连工业大学 纺织与材料工程学院, 辽宁 大连 116034
  • 收稿日期:2021-09-27 修回日期:2021-11-02 出版日期:2022-01-15 发布日期:2022-01-28
  • 通讯作者: 王晓
  • 作者简介:高强(1997—),男,硕士生。主要研究方向为功能纺织品。
  • 基金资助:
    国家自然科学基金青年科学基金项目(51803017);辽宁省教育厅科学研究面上项目(LJKZ0530)

Preparation and performance of cotton based Ti3C2Tx oil-water separation membrane

GAO Qiang, WANG Xiao(), GUO Yajie, CHEN Ru, WEI Ju   

  1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
  • Received:2021-09-27 Revised:2021-11-02 Published:2022-01-15 Online:2022-01-28
  • Contact: WANG Xiao

摘要:

为了开发工艺简单、可重复使用、油水分离效率高的棉基油水分离材料,以实现废旧棉织物的低能耗高附加值利用,通过超声波喷涂的方式将具有亲水性的柔性二维过渡金属碳/氮化物(MXene)纳米片施加于棉织物上,借助离子液体对棉纤维的溶胀作用以增加棉织物表面的粗糙度,进一步提高MXene在棉织物上的固载率,制备棉基MXene油水分离膜。借助扫描电镜和接触角测试仪等分析油水分离膜的表面形貌和润湿性能。对棉基MXene油水分离膜的油水分离效率、膜通量、耐酸碱性和可循环使用性进行了测试。结果表明:以棉织物为基体的MXene油水分离膜的分离效率最高,可达99.1%;10次重复实验后仍具有98.6%的分离效率;在pH值为1~13的范围内分离效率无明显变化,空气中水接触角为30°,保持了原棉织物80.1%的强力。

关键词: 废旧纺织品, 油水分离膜, 棉织物, 二维过渡金属碳化物(Ti3C2Tx), 复合膜, 亲水性

Abstract:

In order to develop cotton based oil-water separation materials with simple process, reusable and high oil-water separation efficiency, and to achieve utilization of waste cotton fabrics with low energy consumption and high added value, hydrophilic flexible MXene nano sheet was applied to cotton fabrics by ultrasonic spraying. With the swelling effect of ionic liquid on the cotton fiber, the surface roughness of cotton fabrics were increased, the fixed loading rate of MXene on cotton fabrics were further improved, and the oil-water separation membrane was prepared. The surface morphology and wettability of oil/water separation membrane were analyzed by scanning electron microscope and contact angle tester. The oil/water separation efficiency, flux, acid and alkali resistance and recyclability of oil/water separation membrane of MXene were tested to evaluate its performance stability in application. The results showed that the separation efficiency of MXene oil/water separation membrane based on cotton fabrics reached 99.1% and remained 98.6% after 10 repeated tests. The separation efficiency has no obvious change in the range of pH 1~13, the contact angle of water in the air is 30°, maintaining 80.1% of the strength of the original cotton fabric.

Key words: waste textiles, oil-water separation membrane, cotton fabric, two dimensional transition metal carbide(Ti3C2Tx), composite membrane, hydrophilicity

中图分类号: 

  • TS106.5

图1

棉织物和MXene油水分离膜电镜照片"

图2

分离效率及膜通量与离子液体处理温度的关系"

图3

分离效率及膜通量与离子液体处理时间的关系"

图4

油水分离效率对比图"

图5

棉织物和MXene油水分离膜的接触角"

图6

循环次数对油水分离效率及膜通量的影响"

图7

pH值对分离效率及膜通量的影响"

表1

织物和油水分离膜拉伸断裂性能"

试样 断裂强
力/N
断裂伸
长率/%
断裂时
间/s
原棉织物 326 8.7 5.25
MXene油水分离膜 264 27.9 16.76
酸处理后MXene油水分离膜 218 10.5 6.31
碱处理后MXene油水分离膜 246 19.4 11.64
[1] ZHANG N, QI Y, ZHANG Y, et al. A review on oil/water mixture separation material[J]. Industrial and Engineering Chemistry Research, 2020, 59(33): 14546-14568.
doi: 10.1021/acs.iecr.0c02524
[2] BU Y, HUANG J, ZHANG S, et al. Robust superhydrophobic surface by nature-inspired polyphenol chemistry for effective oil-water separation[J]. Applied Surface Science, 2018, 440:535-546.
doi: 10.1016/j.apsusc.2018.01.177
[3] SHANG Q Q, LIU C G, CHEN J Q, et al. Sustainable and robust superhydrophobic cotton fabrics coated with castor oil-based nanocomposites for effective oil-water separation[J]. ACS Sustainable Chemistry and Engineering, 2020, 8(19): 7423-7435.
doi: 10.1021/acssuschemeng.0c01469
[4] LI B, WU L, LI L, et al. Superwetting double-layer polyester materials for effective removal of both insoluble oils and soluble dyes in water[J]. ACS Applied Materials & Interfaces, 2014, 6(14): 11581.
[5] CAI Y, LI S, CHENG Z, et al. Facile fabrication of super-hydrophobic FAS modified electroless Ni-P coating meshes for rapid water-oil separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 540:224-232.
doi: 10.1016/j.colsurfa.2017.12.068
[6] PHANTHONG P, REUBROYCHAROEN P, KONGPARAKUL S, et al. Fabrication and evaluation of nanocellulose sponge for oil/water separation[J]. Carbohydrate Polymers, 2018, 190:184-189.
doi: 10.1016/j.carbpol.2018.02.066
[7] ZHU X. Application of microbial remediation in the treatment of offshore oil pollution[J]. IOP Conference Series: Earth and Environmental Science, 2021, 781(5): 052008.
doi: 10.1088/1755-1315/781/5/052008
[8] ROBIN H A Ras, ABRAHAM Marmur. Non-wettable surfaces: theory, preparation and application[M]. Cambridge: Royal Society of Chemistry, 2017:347-367.
[9] LU J, ZHU X, MIAO X, et al. Photocatalytically active superhydrophilic/superole-ophobic coating[J]. ACS Omega, 2020, 5(20): 11448-11454.
doi: 10.1021/acsomega.0c00474
[10] WEI Y, HONG Q, XIAO G, et al. Specially wettable membranes for oil-water separation[J]. Advanced Materials Interfaces, 2018, 5(23): 1800576.
doi: 10.1002/admi.v5.23
[11] GUPTA R K, DUNDERDALE G J, ENGLAND M W, et al. Oil/water separation techniques: a review of recent progresses and future directions[J]. Journal of Materials Chemistry A, 2017, 5:16025-16058.
doi: 10.1039/C7TA02070H
[12] 李伟强. 国外油污处理技术简介[J]. 油气田环境保护, 2003, 13(3): 33-34.
LI Weiqiang. Introduction of oily waste treatment technology in foreign countries[J]. Environmental Protection of Oil & Gas Fields, 2003, 13(3): 33-34.
[13] 刘天骄. 激光细度仪测试棉纤维细度方法的研究[D]. 西安:西安工程大学, 2018:18-20.
LIU Tianjiao. Study on the testing method of the cotton fiber finenessby laserscan[D]. Xi'an:Xi'an Polytechnic University, 2018:18-20.
[14] ZHU J, TIAN Y, LIU X, et al. Lithography-induced hydrophobic surfaces of silicon wafers with excellent anisotropic wetting properties[J]. Microsys-Tem Technologies, 2019, 25(2): 735-745.
[15] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992-1005.
doi: 10.1002/adma.201304138
[16] 刘传富, 孙润仓, 任俊莉, 等. 离子液体在纤维素材料中的应用进展[J]. 精细化工, 2006(4): 318-321.
LIU Chuanfu, SUN Runcang, REN Junli, et al. Progress in applicationsofionic liquids to cellulose materials[J]. Fine Chemicals, 2006(4): 318-321.
[17] RAMNIAL T, INOO D, CLYBURNE J. Phosphonium ionic liquids as reaction media for strong bases[J]. Chemical Communications, 2005, 36(3): 325-327.
[18] DONG Y, LI J, SHI L, et al. Under water superole-ophobic graphene oxide coated meshes for the sepa-ration of oil and water[J]. Chemical Communications, 2014, 50(42): 5586-5589.
doi: 10.1039/C4CC01408A
[1] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[2] 董爽, 孔昱萤, 关晋平, 程献伟, 陈国强. 废旧涤纶/棉混纺军训服的化学分离回收[J]. 纺织学报, 2022, 43(01): 178-185.
[3] 杨星, 李轻舟, 吴敏, 周永凯. 欧盟纺织产业链上的绿色循环及废旧纺织品处理关键问题[J]. 纺织学报, 2022, 43(01): 106-112.
[4] 韩非, 郎晨宏, 邱夷平. 废旧纺织品资源化循环利用研究进展[J]. 纺织学报, 2022, 43(01): 96-105.
[5] 邹梨花, 杨莉, 兰春桃, 阮芳涛, 徐珍珍. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12): 111-118.
[6] 鲜永芳, 王红梅, 吴明华, 王莉莉. 少/无氨氮助剂在活性染料深色印花中的应用[J]. 纺织学报, 2021, 42(11): 89-96.
[7] 刘淑萍, 李亮, 刘让同, 胡泽栋, 耿长军. 棉织物的3-氨丙基三乙氧基硅烷阻燃整理[J]. 纺织学报, 2021, 42(10): 107-114.
[8] 陈莹, 方浩霞. 疏水性导电聚吡咯整理棉织物的制备及其性能[J]. 纺织学报, 2021, 42(10): 115-119.
[9] 程佩, 傅佳佳, 王蕾, 张建祥, 张凯, 高卫东. 预处理对棉织物免烫整理效果的影响[J]. 纺织学报, 2021, 42(09): 126-130.
[10] 张帆, 张国波, 赵宇新, 张儒, 阳海, 王世豪, 汪南方. 催化氧化皂洗在涤纶/棉织物一浴染色中的应用[J]. 纺织学报, 2021, 42(09): 97-103.
[11] 李维斌, 张程, 刘军. 超疏水棉织物制备及其在油水过滤分离中应用[J]. 纺织学报, 2021, 42(08): 109-114.
[12] 汪少朋, 吴宝宅, 何洲. 废旧纺织品回收与资源化再生利用技术进展[J]. 纺织学报, 2021, 42(08): 34-40.
[13] 郭恒, 黄宏博, 姚金波, 姜会钰, 夏治刚, 王运利. 家庭洗涤对免烫棉织物性能的影响[J]. 纺织学报, 2021, 42(07): 129-136.
[14] 陈小文, 吴伟, 钟毅, 徐红, 毛志平. 棉织物的活性染料低含水率焙蒸固色工艺[J]. 纺织学报, 2021, 42(07): 115-122.
[15] 杜欢政, 陆莎, 孙荐, 康乾. 生活源废旧纺织品高值化回收再利用体系的构建研究[J]. 纺织学报, 2021, 42(06): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[3] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[4] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[5] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[6] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[7] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[8] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[9] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[10] 王菊萍;殷佳敏;彭兆清;张峰. 活性染料染色织物超声波酶洗工艺[J]. 纺织学报, 2006, 27(1): 93 -95 .