纺织学报 ›› 2022, Vol. 43 ›› Issue (01): 21-27.doi: 10.13475/j.fzxb.20210910807
强荣1,2(), 冯帅博1, 李婉莹1, 尹琳芝1, 马茜1, 陈博文1, 陈熠1
QIANG Rong1,2(), FENG Shuaibo1, LI Wanying1, YIN Linzhi1, MA Qian1, CHEN Bowen1, CHEN Yi1
摘要:
为响应国家碳中和、碳达峰目标,解决磁性碳基复合材料制备方法繁杂、能耗高、环境不友好等问题,提出生物质衍生法制备碳基吸波材料的新策略。通过选取香菇为原料,铁盐为金属源,经吸附得到铁/香菇前驱体,后经高温煅烧得到Fe/Fe4N/C复合材料,对材料的相结构、微观形貌、热稳定性、磁特性等理化性质进行表征,分析其吸波性能。研究结果表明:随煅烧温度升高,Fe/Fe4N/C复合材料中磁性纳米粒子结晶性增强,Fe4N含量增加,材料的矫顽力和饱和磁化强度降低;煅烧温度有助于碳组分由无定形碳向微晶石墨转变,碳组分石墨化程度升高;当温度为700 ℃时,Fe/Fe4N/C复合材料的吸波性能最佳,厚度为4 mm时,有效吸收带宽可达6.64 GHz (4.00~10.64 GHz)。研究结果将为磁性碳基吸波材料的合成提供借鉴,继而促进生物质衍生法的推广应用。
中图分类号:
[1] | GU W, SHENG J, HUANG Q, et al. Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption[J]. Nano-Micro Letters, 2021, 13, 102:1-4. |
[2] |
LIU P, GAO S, LIU X, et al. Rational construction of hierarchical hollow CuS@CoS2 nanoboxes with heterogeneous interfaces for high-efficiency microwave absorption materials[J]. Composites Part B: Engineering, 2020, 192:107992.
doi: 10.1016/j.compositesb.2020.107992 |
[3] |
WU N, HU Q, WEI R, et al. Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: recent progress, challenges and prospects[J]. Carbon, 2021, 176:88-105.
doi: 10.1016/j.carbon.2021.01.124 |
[4] |
LI T, ZHI D, CHEN Y, et al. Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption[J]. Nano Research, 2020, 13(2): 477-484.
doi: 10.1007/s12274-020-2632-0 |
[5] |
QIANG R, DU Y, WANG Y, et al. Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption[J]. Carbon, 2016, 98:599-606.
doi: 10.1016/j.carbon.2015.11.054 |
[6] |
YANG M, YUAN Y, LI Y, et al. Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework[J]. Carbon, 2020, 161:517-527.
doi: 10.1016/j.carbon.2020.01.073 |
[7] |
LIU P, GAO S, WANG Y, et al. Magnetic porous N-doped carbon composites with adjusted composition and porous microstructure for lightweight microwave absorbers[J]. Carbon, 2021, 173:655-666.
doi: 10.1016/j.carbon.2020.11.043 |
[8] |
QAING R, DU Y, ZHAO H, et al. Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption[J]. Journal of Materials Chemistry A, 2015, 3:13426-13434.
doi: 10.1039/C5TA01457C |
[9] |
LIU D, QIANG R, DU Y, et al. Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption[J]. Journal of Colloid and Interface Science, 2018, 514:10-20.
doi: 10.1016/j.jcis.2017.12.013 |
[10] |
QIANG R, DU Y, CHEN D, et al. Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67)[J]. Journal of Alloys and Compounds, 2016, 681:384-393.
doi: 10.1016/j.jallcom.2016.04.225 |
[11] | GUAN H, WANG Q, WU X, et al. Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials[J]. Composites Part B: Engineering, 2021, 207:108562. |
[12] |
LEI L, WANG Y, ZHANG Z, et al. Transformations of biomass, its derivatives, and downstream chemicals over ceria catalysts[J]. ACS Catalysis, 2020, 10(15): 8788-8814.
doi: 10.1021/acscatal.0c01900 |
[13] |
WANG H, MENG F, LI J, et al. Carbonized design of hierarchical porous carbon/Fe3O4@Fe derived from loofah sponge to achieve tunable high-performance microwave absorption[J]. ACS Sustain Chem Eng, 2018, 6(9): 11801-11810.
doi: 10.1021/acssuschemeng.8b02089 |
[14] |
GOU G, MENG F, WANG H, et al. Wheat straw-derived magnetic carbon foams: in-situ preparation and tunable high-performance microwave absorption[J]. Nano Res, 2019, 12(6): 1423-1429.
doi: 10.1007/s12274-019-2376-x |
[15] |
QIANG R, FENG S, CHEN Y, et al. Recent progress in biomass-derived carbonaceous composites for enhanced microwave absorption[J]. Journal of Colloid and Interface science, 2021, 606:406-423.
doi: 10.1016/j.jcis.2021.07.144 |
[16] |
QIANG R, FENG S, CHEN Y, et al. Porous and flake-like gamma-Fe4N@iron oxides with enhanced microwave absorption performance[J]. Ceramics International 2021, 47:8315-8321.
doi: 10.1016/j.ceramint.2020.11.193 |
[17] |
BHATTACHARYYA S. Iron nitride family at reduced dimensions: a review of their synjournal protocols and structural and magnetic properties[J]. Journal of Physical Chemistry C, 2015, 119:1601-1622.
doi: 10.1021/jp510606z |
[1] | 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116. |
[2] | 李昌龄, 王文聪, 华东, 周建平, 阚建兴, 王鸿博. 锦纶基磁性纤维的制备及其性能[J]. 纺织学报, 2019, 40(11): 26-31. |
[3] | 叶伟, 孙雷, 余进, 孙启龙. 磁性颗粒/碳纤维轻质柔软复合材料制备及其吸波性能[J]. 纺织学报, 2019, 40(01): 97-102. |
[4] | 袁嫣红 徐文炜 彭来湖. 基于Ansys的磁保持电磁选针器瞬态仿真[J]. 纺织学报, 2018, 39(12): 124-130. |
[5] | 杨清玉 李凤艳 邱芳 刘雍. 有氧条件下四氧化铁纳米颗粒的制备与表征[J]. 纺织学报, 2016, 37(08): 7-11. |
[6] | 丁志荣 张琰卿 温娇 郝瑞莉 高阳. 绒面吸波织物的制备及其吸波性能[J]. 纺织学报, 2015, 36(10): 44-48. |
[7] | 吴菲非 于高杰 陈雁. 磁性纤维针织物表面磁场的分布[J]. 纺织学报, 2014, 35(8): 32-0. |
[8] | 温娇 丁志荣 张琰卿 邹亚玲 郝瑞莉. 吸波涂层复合面料的制备及其吸波性能[J]. 纺织学报, 2014, 35(5): 61-0. |
[9] | 吴菲非 于高杰 陈雁. 磁性纤维含量对针织面料服用性能的影响[J]. 纺织学报, 2014, 35(3): 27-0. |
[10] | 白刚 刘艳春 李凤艳 钱红飞. 磁性复合粒子固定化葡萄糖氧化酶的制备[J]. 纺织学报, 2014, 35(3): 62-0. |
[11] | 于高杰 吴菲非 左华丽 陈雁. 磁性针织物表面磁性测试与评价[J]. 纺织学报, 2014, 35(1): 57-0. |
[12] | 荆妙蕾 李金. 基于灰聚类方法的磁性纤维混纺织物湿舒适性评估[J]. 纺织学报, 2013, 34(5): 35-40. |
[13] | 吴隆. 用磁性磨料对钢领进行光整加工的研究[J]. 纺织学报, 2004, 25(04): 77-78. |
[14] | 齐鲁;叶建忠;李和玉;邹建柱. 磁性纤维的实验研究[J]. 纺织学报, 2004, 25(01): 68-69. |
|