纺织学报 ›› 2022, Vol. 43 ›› Issue (01): 28-35.doi: 10.13475/j.fzxb.20210901708

• 纤维材料 • 上一篇    下一篇

废弃秸秆/聚己内酯吸声复合材料的制备与性能

吕丽华(), 李臻, 张多多   

  1. 大连工业大学 纺织与材料工程学院, 辽宁 大连 116034
  • 收稿日期:2021-09-06 修回日期:2021-10-21 出版日期:2022-01-15 发布日期:2022-01-28
  • 作者简介:吕丽华(1978—),女,教授,博士。主要研究方向为纤维材料再生资源化利用技术。E-mail: lvlh@dlpu.edu.cn
  • 基金资助:
    大连市科技创新基金项目(2019J12SN71)

Preparation and properties of sound absorbing composites based on use of waste straw/polycaprolactone

LÜ Lihua(), LI Zhen, ZHANG Duoduo   

  1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
  • Received:2021-09-06 Revised:2021-10-21 Published:2022-01-15 Online:2022-01-28

摘要:

为提高废弃秸秆的利用率,拓宽其应用领域,以废弃秸秆为增强原料,聚己内酯为基体材料,通过热压法制备废弃秸秆/聚己内酯吸声复合材料。在热压温度为120 ℃,压力为10 MPa,热压时间为20 min的条件下,通过实验探究秸秆质量分数、复合材料密度、复合材料厚度、后置空气层厚度等参数对吸声复合材料吸声性能的影响。结果表明:当秸秆质量分数为30%、复合材料密度为0.450 g/cm3、复合材料厚度为1.5 cm、后置空气层厚度为3.0 cm时,废弃秸秆/聚己内酯吸声复合材料在100~6 300 Hz频率内吸声性能优异,其平均吸声系数为0.50,降噪系数为0.50,最大吸声系数为0.71,吸声性能等级达到Ⅲ级,吸声机制是多孔吸声原理。

关键词: 废弃秸秆, 聚己内酯, 吸声性能, 复合材料, 吸声机制

Abstract:

In order to improve the utilization rate of waste straws and broaden its application field, waste straw/polycaprolactone sound absorption composites were prepared by hot pressing with waste straw as reinforcement material and polycaprolactone as matrix material. Under the hot pressing temperature of 120 ℃, pressure of 10 MPa and hot pressing time of 20 min, the influences of straw mass fraction, composite density, composite thickness and thickness of rear air layer on sound absorption performance of the composite were investigated by experiment. The results shows that when the straw mass fraction was 30%, the composite density was 0.450 g/cm3, the composite thickness was 1.5 cm, and the thickness of the rear air layer was 3.0 cm, the waste straw/polycaprolactone sound absorption composite demonstrates excellent sound absorption performance for 100-6 300 Hz frequency, with the average sound absorption coefficient of 0.50, the noise reduction coefficient of 0.50, and the maximum sound absorption coefficient 0.71, which indicate grade Ⅲ of sound absorption performance. The research revealed that the sound absorption mechanism is based on porous structure of the composites.

Key words: waste straw, polycaprolactone, sound absorption performance, composite material, sound absorption mechanism

中图分类号: 

  • TS102.9

表1

待优化的复合材料工艺参数"

秸秆质量
分数/%
复合材料密度/
( g·cm-3)
复合材料
厚度/cm
后置空气
层厚度/cm
30 0.450 1.0 0.0
40 0.500 1.5 1.0
50 0.550 2.0 2.0
60 0.600 2.5 3.0

图1

废弃秸秆/聚己内酯吸声复合材料"

表2

吸声性能等级"

降噪系数NRC 吸声性能等级
[0.8,+∞)
[0.6,0.8)
[0.4,0.6)
[0.2,0.4)

图2

废弃玉米秸秆的形态结构SEM照片"

图3

秸秆质量分数对废弃秸秆/聚己内酯吸声复合材料吸声性能的影响"

图4

复合材料密度对废弃秸秆/聚己内酯吸声复合材料吸声性能的影响"

图5

复合材料厚度对吸声复合材料吸声系数的影响"

图6

复合材料截面厚度改变前后的孔隙变化示意图"

图7

复合材料厚度对平均吸声系数与降噪系数的影响"

图8

后置空气层厚度对废弃秸秆/聚己内酯吸声复合材料吸声性能的影响"

图9

废弃秸秆/聚己内酯吸声复合材料的吸声系数曲线"

图10

废弃秸秆/聚己内酯吸声复合材料的扫描电镜照片"

[1] 孙雪, 龚宏健. 噪声污染监测现状及对策探讨[J]. 资源节约与环保, 2021(7): 57-58.
SUN Xue, GONG Hongjian. Current situation and countermeasures of noise pollution monitoring[J]. Resource Conservation and Environmental Protection, 2021(7): 57-58.
[2] 霍丽丽, 赵立欣, 姚宗路, 等. 中国玉米秸秆草谷比及其资源时空分布特征[J]. 农业工程学报, 2020, 36(21): 227-234.
HUO Lili, ZHAO Lixin, YAO Zonglu, et al. Difference of the ratio of maize stovers to grain and spatiotemporal variation characteristics of maize stovers in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(21): 227-234.
[3] 王立新. 玉米秸秆综合利用现状和发展前景[J]. 农业开发与装备, 2021(1): 66-67.
WANG Lixin. Present situation and development prospect of comprehensive utilization of corn straw[J]. Agricultural Development and Equipment, 2021(1): 66-67.
[4] 吴瑕, 徐伯翰, 王景立. 玉米秸秆收获技术与装备发展现状分析[J]. 农业与技术, 2018, 38(21): 72-74.
WU Xia, XU Bohan, WANG Jingli. Analysis of maize straw harvesting technology and equipment development status[J]. Agriculture and Technology, 2018, 38(21): 72-74.
[5] 李涛, 卓海峰, 王文富, 等. 探讨秸秆焚烧的危害与秸秆的综合利用[J]. 科技信息(科学教研), 2008(20): 35,37.
LI Tao, ZHUO Haifeng, WANG Wenfu, et al. Discussion on the harm of straw burning and comprehensive utilization of straw[J]. Science and Technology Information (Science Teaching and Research), 2008(20): 35,37.
[6] 杨军, 余木火, 陈惠芳. 秸秆纤维复合材料的发展概况[J]. 材料导报, 1999(6): 50-51,18.
YANG Jun, YU Muhuo, CHEN Huifang. The development of straw fiber composite materials[J]. Materials Reports, 1999(6): 50-51,18.
[7] 肖力光, 赵露, 陈景义. 利用秸秆制造新型复合节能墙体材料的可行性研究[J]. 吉林建筑工程学院学报, 2004(2): 1-6,13.
XIAO Liguang, ZHAO Lu, CHEN Jingyi. Feasibility study on making new composite energy saving wall material with straw[J]. Journal of Jilin Architectural and Civil Engineering Institute, 2004(2): 1-6,13.
[8] 华亮, 黄银娣. 汽车用新型吸声材料:稻草秸秆板吸声性能的测定[J]. 生物质化学工程, 2007(6): 29-31.
HUA Liang, HUANG Yindi. Determination of sound absorption performance of straw straw board as a new sound absorption material for automobile[J]. Biomass Chemical Engineering, 2007(6): 29-31.
[9] 李长伟, 吕丽华. 废弃羊毛吸声复合材料的制备及其性能[J]. 纺织学报, 2018, 39(10): 74-80.
LI Changwei, LÜ Lihua. Preparation and properties of sound absorption composites based on waste wool[J]. Journal of Textile Research, 2018, 39(10): 74-80.
[10] LYU L H, LIU Y J, BI J H, et al. Sound absorption properties of DFs/EVA composites[J]. Polymers (Basel), 2019, 11(5): 811-827.
doi: 10.3390/polym11050811
[11] LIU Y J, LYU L H, XIONG X Q, et al. Structural characteristics and sound absorption properties of poplar seed fibers[J]. Textile Research Journal, 2020, 90(21/22): 2467-2477.
doi: 10.1177/0040517520921396
[12] 苗中在. 吸声材料在高速公路声屏障中的应用[J]. 中国公路, 2018(9): 86-87.
MIAO Zhongzai. Application of sound absorbing material in sound barrier of highway[J]. China Road, 2018(9): 2467-2477.
[13] MANISH R, SHAHAB F, NARESH T. A study of areca nut leaf sheath fibers as a green sound-absorbing material[J]. Applied Acoustics, 2020, 169:107490-107503.
doi: 10.1016/j.apacoust.2020.107490
[14] 敖庆波, 王建忠, 李烨, 等. 低频吸声材料的研究进展[J]. 功能材料, 2020, 51(12): 12045-12050.
AO Qingbo, WANG Jianzhong, LI Ye, et al. Research progress of low frequency sound absorption materials[J]. Journal of Functional Materials, 2020, 51(12): 12045-12050.
[15] XIE S, YANG S, YANG C, et al. Sound absorption performance of a filled honeycomb composite structure[J]. Applied Acoustics, 2020, 162:107202-107210.
doi: 10.1016/j.apacoust.2019.107202
[16] 李伟, 赵芙蓉. 常用室内吸声材料吸声性能实验研究[J]. 城市住宅, 2019, 26(12): 117-120.
LI Wei, ZHAO Furong. Experimental study on sound absorption properties of several commonly used sound-absorbing materials[J]. Town House, 2019, 26(12): 117-120.
[17] 彭敏, 赵晓明. 纤维类吸声材料的研究进展[J]. 材料导报, 2019, 33(21): 3669-3677.
PENG Min, ZHAO Xiaoming. Advances in the fiber-based sound-absorbing materials[J]. Materials Reports, 2019, 33(21): 3669-3677.
[18] 何琳, 朱海潮, 邱小军, 等. 声学理论与工程应用[M]. 北京: 科学出版社, 2006:79-104.
HE Lin, ZHU Haichao, QIU Xiaojun, et al. Acoustic theory and engineering applications[M]. Beijing: Science Press, 2006:79-104.
[19] 吕丽华, 田媛媛, 李洪伟. 废弃苎麻纤维吸声复合材料的制备及其性能分析[J]. 毛纺科技, 2020, 48(4): 7-11.
LÜ Lihua, TIAN Yuanyuan, LI Hongwei. Fabrication and properties of sound-absorbing composites based on waste ramie fibers[J]. Wool Textile Journal, 2020, 48(4): 7-11.
[1] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[2] 强荣, 冯帅博, 李婉莹, 尹琳芝, 马茜, 陈博文, 陈熠. 生物质衍生磁性碳基复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(01): 21-27.
[3] 李博, 樊威, 高兴忠, 王淑娟, 李志虎. 碳纤维增强类玻璃环氧高分子复合材料闭环回收利用[J]. 纺织学报, 2022, 43(01): 15-20.
[4] 袁琼, 邱海鹏, 谢巍杰, 王岭, 王晓猛, 张典堂, 钱坤. 三维六向编织SiCf/SiC复合材料的力学行为及其损伤机制[J]. 纺织学报, 2021, 42(12): 81-89.
[5] 陈海鸟, 田伟, 金肖克, 张红霞, 李艳清, 祝成炎. 基于三维显微成像的毛竹横截面结构表征[J]. 纺织学报, 2021, 42(12): 49-54.
[6] 魏小玲, 李瑞雪, 秦卓, 胡新荣, 林富生, 刘泠杉, 龚小舟. 经向T结构预制体成型关键技术[J]. 纺织学报, 2021, 42(11): 51-55.
[7] 普丹丹, 傅雅琴. 涤纶织物/聚氯乙烯-中空微珠复合材料的制备及其隔声性能[J]. 纺织学报, 2021, 42(11): 77-83.
[8] 宋雪旸, 张岩, 徐成功, 王萍, 阮芳涛. 碳纤维/聚丙烯/聚乳酸增强复合材料的力学性能[J]. 纺织学报, 2021, 42(11): 84-88.
[9] 魏发云, 杨帆, 王海楼, 于斌, 邹学书, 张伟. 改性聚乙烯醇纤维增强水泥基复合材料制备及其力学性能[J]. 纺织学报, 2021, 42(10): 53-60.
[10] 胡侨乐, 边国丰, 邱夷平, 魏毅, 徐珍珍. 高速列车地板用蜂窝夹芯结构复合材料隔声性能[J]. 纺织学报, 2021, 42(10): 75-83.
[11] 万振凯, 贾敏瑞, 包玮琛. 三维编织复合材料中碳纳米管纱线嵌入位置和数量的优化配置[J]. 纺织学报, 2021, 42(09): 76-82.
[12] 檀江涛, 蒋高明, 高哲, 郑培晓. 抗低速冲击纺织复合材料头盔壳体研究进展[J]. 纺织学报, 2021, 42(08): 185-193.
[13] 任丽冰, 陈利, 焦伟. 基于一元二次函数的层联机织预制体细观结构表征[J]. 纺织学报, 2021, 42(08): 76-83.
[14] 张婷婷, 许可欣, 金梦甜, 葛世洁, 高国洪, 蔡一啸, 王华平. 纤维素基有机-无机纳米光催化复合材料制备及其水处理应用的研究进展[J]. 纺织学报, 2021, 42(07): 175-183.
[15] 周濛濛, 蒋高明, 高哲, 郑培晓. 纬编衬经衬纬管状织物增强复合材料研究进展[J]. 纺织学报, 2021, 42(07): 184-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[3] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[4] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[5] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[6] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[7] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[8] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[9] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[10] 王菊萍;殷佳敏;彭兆清;张峰. 活性染料染色织物超声波酶洗工艺[J]. 纺织学报, 2006, 27(1): 93 -95 .