纺织学报 ›› 2022, Vol. 43 ›› Issue (01): 49-57.doi: 10.13475/j.fzxb.20210910009

• 纤维材料 • 上一篇    下一篇

聚乳酸基生物可降解熔喷非织造材料的研究进展与展望

朱斐超1, 张宇静1, 张强2, 叶翔宇3, 张恒4, 汪伦合5, 黄瑞杰6, 刘国金1, 于斌1()   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.江苏祯玉生物材料有限公司, 江苏无锡 214000
    3.浙江省轻工业品质量检验研究院, 浙江 杭州 310018
    4.中原工学院 纺织学院, 河南 郑州 450007
    5.浙江海正生物材料有限公司, 浙江 台州 318000
    6.中广核俊尔新材料有限公司, 浙江 温州 325000
  • 收稿日期:2021-09-26 修回日期:2021-11-08 出版日期:2022-01-15 发布日期:2022-01-28
  • 通讯作者: 于斌
  • 作者简介:朱斐超(1988—),男,讲师,博士。主要研究方向为生物基与可降解产业用非织造材料。
  • 基金资助:
    国家自然科学基金项目(52003306);浙江省自然科学基金项目(LQ21E030013);浙江理工大学科研启动基金项目(20202293-Y)

Research progress and prospect on biodegradable polylactic acid-based melt-blown nonwovens

ZHU Feichao1, ZHANG Yujing1, ZHANG Qiang2, YE Xiangyu3, ZHANG Heng4, WANG Lunhe5, HUANG Ruijie6, LIU Guojin1, YU Bin1()   

  1. 1. College of Textile Science and Engineering (International Institute of silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Jiangsu Nature Arts Biomaterials Co., Ltd., Wuxi, Jiangsu 214000, China
    3. Zhejiang Light Industrial Products Inspection and Research Institute, Hangzhou, Zhejiang 310018, China
    4. College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
    5. Zhejiang Hisun Biomaterials Co., Ltd., Taizhou, Zhejiang 318000, China
    6. China General Nuclear (CGN) Juner New Materials Co., Ltd., Wenzhou, Zhejiang 325000, China
  • Received:2021-09-26 Revised:2021-11-08 Published:2022-01-15 Online:2022-01-28
  • Contact: YU Bin

摘要:

聚乳酸(PLA)基熔喷非织造材料存在柔韧性不足、驻极耐久性差、功能性单一等问题,限制了其作为高性能吸附与过滤材料的应用和发展,本文全面总结了PLA基熔喷材料在原料设计、加工成形及应用方面的研究进展。介绍了PLA基熔喷材料的加工成形方法及其改性,主要包括母粒改性(共聚/嵌段、增强增韧、功能性改性等)和后整理改性(静电驻极整理和功能整理);阐述了PLA基熔喷材料在空气过滤、医疗防护、卫生保健、组织工程、清洁擦拭、吸油、保暖领域的典型应用。最后,对PLA基熔喷材料的纤维微纳化、多组分化、复合化、耐静电驻极化、功能和智能化发展方向进行了展望,为PLA基熔喷材料的高质化和高值化发展提供理论和技术参考。

关键词: 生物可降解, 聚乳酸, 熔喷, 非织造材料, 微纳米纤维, 过滤

Abstract:

Polylactic acid-based(PLA-based)melt-blown nonwovens have drawbacks such as insufficient flexibility, low heat-resistant temperature, poor electret durability, and single functionality, which limit their development and applications as high-performance adsorption and filtration materials. This paper comprehensively reviewed the research progress of PLA-based melt-blown nonwovens focusing on raw material design, processing and applications. It introduced the processing and molding methods of PLA-based melt-blown nonwovens, explored the modification of PLA-based melt-blown materials, including masterbatch modification (copolymerization/block, enhanced toughening, functional modification, etc.) and finishing modification (durable electret and functional finishing). The typical applications of PLA-based melt-blown nonwovens in the fields of air filtration, medical protection, health care, tissue engineering, cleaning and wiping, oil absorption and warmth are explained. The development trends of PLA-based micro-nano scale melt-blown fiber, multi-component, composites, durable electret, function and intelligence are prospected, so as to provide theoretical and technical reference for development of PLA-based melt-blown nonwovens with high quality and high value.

Key words: biodegradable, polylactic acid, melt-blown, nonwovens, micro-nano fiber, filtration

中图分类号: 

  • TS176

图1

PLA基熔喷纤维及非织造材料成形示意图"

[1] CAMPOS R K, JIN J, RAFAEL G H, et al. Decontamination of SARS-CoV-2 and other RNA viruses from N95 level meltblown poly propylene fabric using heat under different humidities[J]. ACS Nano, 2020.DOI: 10.1101/2020.08.10.20171728.
doi: 10.1101/2020.08.10.20171728
[2] 张星, 张海峰, 靳向煜, 等. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(3): 168-174.
ZHANG Xing, ZHANG Haifeng, JIN Xiangyu, et al. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020, 41(3): 168-174.
[3] HIREMATH N, BHAT G. Melt blown polymeric nanofibers for medical applications: an overview[J]. Nano Science and Technology, 2015, 2(1): 1-9.
[4] MOHAMMAD A H, BONG Y Y, ARNOLD W, et al. Fabrication of nanofiber meltblown membranes and their filtration properties[J]. Journal of Membrane Science, 2013, 427:336-344.
doi: 10.1016/j.memsci.2012.09.050
[5] 谷英姝, 汪滨, 张秀芹, 等. 聚乳酸熔喷非织造材料用于空气过滤领域的研究进展[J]. 化工新型材料, 2021, 49(1): 214-217.
GU Yingshu, WANG Bin, ZHANG Xiuqin, et al. Research progress on PLA melt-blown nonwoven applied in air filtration[J]. New Chemical Materials, 2021, 49(1): 214-217.
[6] DIETER H M, ANDREAS K. Meltblown fabrics from biodegradable polymers[J]. Inrernational Nonwovens Journal, 2001, 10(1): 11-13.
[7] 刘亚. 熔喷/静电纺复合法聚乳酸非织造布的制备及过滤性能研究[D]. 天津: 天津大学, 2009: 63.
LIU Ya. Study on preparation and filrearion property of PLA nonwovens via meltblown/electro-spinning[D]. Tianjin: Tiangong University, 2009: 63.
[8] LIU Y, CHENG B W, NA W, et al. Development and filtration performance of polylactic acid meltblowns[J]. Textile Research Journal, 2010, 79(9): 771-779.
doi: 10.1177/0040517509102797
[9] 李玉梅. 聚乳酸熔喷非织造布的纺制及其结构与性能的研究[D]. 天津: 天津工业大学, 2008: 32.
LI Yumei. Study on spinning, structure and properties of polylactic acid melt blown nonwovens[D]. Tianjin: Tiangong University, 2008: 32.
[10] YU B, ZHANG X, KONG J, et al. Influence of die-to-collector distance on structure and property of the PLA meltblowing web[J]. Rare Metal Materials and Engineering, 2016, 45(S1): 345-349.
[11] 张琦. 驻极体聚乳酸熔喷非织造材料的制备及性能研究[D]. 杭州: 浙江理工大学, 2012: 49.
ZHANG Qi. The preparation and study on properties of electret polylactic acid meltblown nonwovens [D]. Hangzhou: Zhejiang Sci-Tech University, 2012: 49.
[12] EWA D, ANNA S, MARCIN K, et al. Effects of process parameters on structure and properties of melt-blown poly (lactic acid) nonwovens for skin regeneration[J]. Journal of Functional Biomaterials, 2021, 12(16): 1-17.
doi: 10.3390/jfb12010001
[13] HAMMONDS R L, GAZZOLA W H, BENSON R S. Physical and thermal characterization of polylactic acid meltblown nonwovens[J]. Journal of Applied Polymer Science, 2014, 131(15): 117-125.
[14] 渠叶红, 柯勤飞. 熔喷聚乳酸非织造材料的研究进展[J]. 产业用纺织品, 2003(12): 1-5.
QU Yehong, KE Qinfei. The investigation progress on melt-blown polylactic acid nonwovens[J]. Technical Textiles, 2003(12): 1-5.
[15] 渠叶红, 柯勤飞, 靳向煜, 等. 熔喷聚乳酸非织造材料工艺与过滤性能研究[J]. 产业用纺织品, 2005(5): 19-22.
QU Yehong, KE Qinfei, JIN Xiangyu, et al. Study on the meltblown PLA nonwoven process and filtration property[J]. Technical Textiles, 2005(5): 19-22.
[16] 曹勇民, 于斌, 韩建, 等. PDLLA-PCL-PDLLA的添加对PLA/PCL共混材料力学性能的影响[J]. 浙江理工大学学报(自然科学版), 2016, 35/36(4): 538-542.
CAO Yongmin, YU Bin, HAN Jian, et al. Effect of PDLLA-PCL-PDLLA on mechanical property of PLA/PCL blending matrtial [J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2016, 35/36(4): 538-542.
[17] ZHU F, SU J, WANG M, et al. Study on dual-monomer melt-grafted poly (lactic acid) compatibilized poly (lactic acid)/polyamide 11 blends and toughened melt-blown nonwovens[J]. Journal of Industrial Textiles, 2018, 49(6): 748-772.
doi: 10.1177/1528083718795913
[18] ZHU F, YU B, SU J, et al. Study on PLA/PA11 bio-based toughening melt-blown nonwovens[J]. Autex Research Journal, 2020, 20(1): 24-31.
doi: 10.2478/aut-2019-0002
[19] ZHU F, SU J, ZHAO Y, et al. Influence of halloysite nanotubes on poly (lactic acid) melt-blown nonwovens compatibilized by dual-monomer melt-grafted poly (lactic acid)[J]. Textile Research Journal, 2019: 4173-4185.
[20] YU B, WANG M, SUN H, et al. Preparation and properties of poly (lactic acid)/magnetic Fe3O4 composites and nonwovens[J]. RSC Advances, 2017, 7(66): 41929-41935.
doi: 10.1039/C7RA06427F
[21] 彭鹏. PLA增韧增强改性及其熔喷超细复合纤维材料的制备[D]. 南通: 南通大学, 2015: 60-61.
PENG Peng. Study on toughening and reinforcing modification of PLA and the preparation of superfine composite fiber by melt blowing[J]. Nantong: Nantong University, 2015: 60-61.
[22] CUI L, ZHU C L, ZHU P, et al. Preparation and physical properties of melt-blown nonwovens of biodegradable PLA/acetyl tributyl citrate/FePol copolyester blends[J]. Journal of Applied Polymer Science, 2012, 125(S2): 158-167.
doi: 10.1002/app.v125.1
[23] 张琦, 于斌, 韩建, 等. 电气石改性聚乳酸切片的制备及分析[J]. 浙江理工大学学报(自然科学版), 2012, 29(4): 480-483.
ZHANG Qi, YU Bin, HAN Jian, et al. Preparation and analysis of polylactic acid resin containing tourmaline[J]. Journal of Zhejiang Sci-Tech Univer-sity(Natural Sciences Edition), 2012, 29(4): 480-483.
[24] YU B, HAN J, SUN H, et al. The Preparation and property of poly (lactic acid)/tourmaline blends and melt-blown nonwoven[J]. Polymer Composites, 2015, 36(2): 264-271.
doi: 10.1002/pc.v36.2
[25] 蔡诚, 唐国翌, 宋国林, 等. 纳米SiO2驻极体/聚乳酸复合熔喷非织造材料的制备及性能[J]. 复合材料学报, 2017, 34(3): 486-493.
CAI Cheng, TANG Guoyi, SONG Guolin, et al. Preparation and properties of nano-SiO2 electret/PLA composite meltblown nonwovens[J]. Acta Materiae Compositae Sinica, 2017, 34(3): 486-493.
[26] 黄海超, 宋国林, 唐国翌, 等. 驻极体增塑剂复合改性聚乳酸熔喷非织造材料的制备及性能[J]. 复合材料学报, 2019, 36(3): 563-571.
HUANG Haichao, SONG Guolin, TANG Guoyi, et al. Preparation and characterization of poly (lactic acid) meltblown nonwovens modified by electrets and co-plasticizers[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 563-571.
[27] MAJCHRZYCKA K, BROCHOCKA A, BRYCKI B. Biocidal agent for modification of poly (lactic acid) high-efficiency filtering nonwovens[J]. Fibres & Textiles in Eastern Europe, 2015, 23(4): 88-95.
[28] LATWINSKA M, JADWIGA S, JERZY C, et al. PLA and PP composite nonwoven with antimicrobial activity for filtration applications[J]. International Journal of Polymer Science, 2016(119): 1-9.
[29] YU B, WANG M, SUN H, et al. Preparation and properties of poly (lactic acid)/magnetic Fe3O4 composites and nonwovens[J]. RSC Advances, 2017, 7(66): 41929-41935.
doi: 10.1039/C7RA06427F
[30] SUN H, PENG S W, WANG M J, et al. Preparation and characterization of magnetic PLA/Fe3O4-g-PLLA composite melt blown nonwoven fabric for air filtration[J]. Journal of Engineered Fibers and Fabrics, 2020, 15(1): 1-13.
[31] NAKAGAWA T, NAKIRI T, HOSOYA R, et al. Electrical properities of biodegradable polylactic acid film[J]. IEEE Transactions on Industry Applications, 2004, 40(4): 1020-1024.
doi: 10.1109/TIA.2004.830751
[32] TSAI P, YAN Y, BROWN D, et al. Electrostatic charging of biodegradable MB PLA and its use for air filter media [R]. Beijing: American Filtration and Separations Society, 2009.
[33] 任煜, 李猛, 尤祥银. 驻极处理对聚乳酸熔喷材料性能的影响[J]. 纺织学报, 2015, 36(9): 13-17.
REN Yu, LI Meng, YOU Xiangyin. Influence of corona electret treatment on melt-blow PLA nonwovens material[J]. Journal of Textile Research, 2015, 36(9): 13-17.
[34] ZHANG J, CHEN G, BHAT G S, et al. Electret characteristics of melt-blown polylactic acid fabrics for air filtration application[J]. Journal of Applied Polymer, 2020: 48309.
[35] 马金亮, 麻文效, 温开琦. 壳聚糖接枝改性PLA非织造布的制备及性能研究[J]. 合成纤维工业, 2020, 43(4): 45-48.
MA Jinliang, MA Wenxiao, WEN Kaiqi. Preparation and properties of chitosan-graft modified PLA non-woven fabric[J]. China Synthetic Fiber Industry, 2020, 43(4): 45-48.
[36] 任煜, 王晓娜, 徐林, 等. 常压等离子体辅助PLA表面接枝壳聚糖及抗菌性[J]. 上海纺织科技, 2017(8): 40-43.
REN Yu, WANG Xiaona, XU Lin, et al. Plasma-chitosan combined treatment for surface modification of polylactic acid spunbond nonwovens[J] Shanghai Textile Science & Technology, 2017(8): 40-43.
[37] 孙欣悦, 薛亚玲, 逯向阳, 等. 溶菌酶在等离子体改性PLA纤维上的固定[J]. 山东化工, 2020, 49(7): 6-8.
SUN Xinyue, XUE Yaling, LU Xiangyang, et al. Fixation of lysozyme on plasma-modified PLA fiber[J]. Shandong Chemical Industry, 2020, 49(7): 6-8.
[38] 史韩萍, 李旭明. 脂肪酶处理对聚乳酸非织造布亲水性的影响[J]. 上海纺织科技, 2016, 44(6): 26-27, 36.
SHI Hanpin, LI Xuming. Effect of lipase treatment on the hydrophilicity of PLA nonwovens[J]. Shanghai Textile Science & Technology, 2016, 44(6): 26-27,36.
[39] LI T T, WANG Z, REN H T, et al. Recyclable and degradable nonwoven-based double-network composite hydrogel adsorbent for efficient removal of Pb (II) and Ni (II) from aqueous solution[J]. Science of the Total Environment, 2020, 758(3): 143640.
doi: 10.1016/j.scitotenv.2020.143640
[40] 彭鹏, 张瑜, 张伟, 等. 聚乳酸超细纤维医用抗菌敷料的制备[J]. 上海纺织科技, 2014, 42(12): 18-20.
PENG Peng, ZHANG Yu, ZHANG Wei, et al. Preparation of polylactic acid superfine fiber anti-becterial medical dressings[J]. Shanghai Textile Science & Technology, 2014, 42(12): 18-20.
[41] 仙桃市非织造布产业协会. 恒天纤维:生物基可降解聚乳酸非织造医用防护材料[EB/OL]. (2020-09-08) https://www.sohu.com/a/417134038_120065055.
Xiantao Nonwoven Fabric Industry Association. Hengtian fiber: bio-based biodegradable polylactic acid nonwoven medical protective material[EB/OL].(2020-09-08) https://www.sohu.com/a/417134038_120065055.
[42] 张恒, 甄琪, 柳洋, 等. 一种水平分支结构的熔喷非织造复合材料及其制备方法: 201810530117.0[P]. 2020-06-26.
ZHANG Heng, ZHEN Qi, LIU Yang, et al. Melt-blown non-woven composite material with horizontal branch structure and preparation method thereof: 201810530117.0[P]. 2020-06-26.
[43] 崔景强, 张恒, 甄琪, 等. 一种聚乳酸弹性超细纤维非织造材料及其制备方法和应用:202110606498.6[P]. 2021-08-24.
CUI Jingqiang, ZHANG Heng, ZHEN Qi, et al. Polylactic acid elastic superfine fiber non-woven material and preparation method and application thereof: 202110606498.6[P]. 2021-08-24.
[44] 聚乳酸O2O平台. 丰原聚乳酸PLA基材面膜,让你的皮肤更光泽[EB/OL]. (2020-11-17). https://www.163.com/dy/article/FRLGJHOL0538PX6U.html.
Polylactic acid O2O platform. Fengyuan polylactic acid PLA base mask to make your skin more shiny[EB/OL].(2020-11-17). https://www.163.com/dy/article/FRLGJHOL0538PX6U.html.
[45] GAZZOLA W H, BENSON R S, CARVER W. Meltblown polylactic acid nanowebs as a tissue engineering scaffold[J]. Annals of Plastic Surgery, 2019, 83(6): 716-721.
doi: 10.1097/SAP.0000000000002036
[46] MONIKA R, JOANNA G, JANUSZ F, et al. PLA melt-blown fibrous structures for potential biomedical applications[J]. Engineering of Biomaterials, 2011, 14(104): 5-7.
[47] CAI S, POURDEYHIMI B, LOBOA E G. Industrial-scale fabrication of an osteogenic and antibacterial PLA/silver-loaded calcium phosphate composite with significantly reduced cytotoxicity[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2019, 107B:900-910.
[48] JENKINS T L, MEEHAN S, POURDEYHIMI B, et al. Meltblown polymer fabrics as candidate scaffolds for rotator cuff tendon tissue engineering[J]. Tissue Engineering Part A, 2017, 23(17/18): 958.
doi: 10.1089/ten.tea.2016.0470
[49] 山东希瑞新材料有限公司. 希瑞新材料双拳出击上海国际非织造材料展览会[EB/OL]. (2021-08-03). https://www.unikorn-nonwoven.com/newsinfo/1767769.html.
Unicorn Nonwovens Co., Ltd.. Unicorn Nonwovens Co., Ltd., double fist attack Shanghai International Nonwovens Exhibition[EB/OL]. (2021-08-03). https://www.unikorn-nonwoven.com/newsinfo/1767769.html.
[50] 郭永诗, 骆旭晖, 张齐婷, 等. 熔喷吸油材料的研究进展及现状[J]. 轻工科技, 2017, 33(8): 114-115.
GUO Yongshi, LUO Xuhui, ZHANG Qiting, et al. Research progress and status of melt blown oil absorbing materials[J]. Light Industry Science and Technology, 2017, 33(8): 114-115.
[51] 黄婷婷, 仇何, 张瑜, 等. 可降解聚乳酸熔喷吸油材料的研发及性能测试[J]. 上海纺织科技, 2015, 43(12): 24-27.
HUANG Tingting, QIU He, ZHANG Yu, et al. The research and performance testing on the biodegradable polylactic acid melt-blown oil absorption materials[J]. Shanghai Textile Science & Technology, 2015, 43(12): 24-27.
[52] 仇何, 路绮雯, 张伟, 等. PLA/PAE仿鹅绒高效保暖材料的制备与工艺研究[J]. 南通大学学报(自然科学版), 2016, 15(1): 34-38.
QIU He, LU Qiwen, ZHANG Wei, et al. Preparation and process of PLA/PAE imitate down feather effective warm materials[J]. Jounal of Nantong Univer-sity (Natural Science Edition), 2016, 15(1): 34-38.
[53] 林玲, 周兆懿, 何海华. 聚乳酸絮片的制备,性能及展望[J]. 合成纤维, 50(2): 25-27.
LIN Ling, ZHOU Zhaoyi, HE Haihua. Preparation, performance and prospect of polylactic acid flakes[J]. Synthetic Fiber in China, 50(2): 25-27.
[54] MAGDI E, Gajanan B, AFFAF E, et al. Acoustical absorptive properties of meltblown nonwovens for textile machinery[J]. Textile Research Journal, 2020, 91(11/12): 1-13.
[55] 俞琳英. 功能性纺织品检测现状及发展趋势[J]. 纺织报告, 2021, 40(6): 40-41.
YU Linying. Current status and development trend of functional textiles testing[J]. Textile Reports, 2021, 40(6): 40-41.
[56] GROUP F. NTI advances meltblown nanofibre technology[J]. Filtration & Separation, 2005, 42(4): 12.
[57] BENSON R S. Physical and thermal characterization of polylactic acid meltblown nonwovens[J]. Journal of Applied Polymer Science, 2014, 131(15): 117-125.
[58] WANG Z, LIU X, MACOSKO C W, et al. Nanofibers from water-extractable melt-blown immiscible polymer blends[J]. Polymer, 2016, 101:269-273.
doi: 10.1016/j.polymer.2016.08.058
[59] RUNGIAH S, RUAMSUK R, VROMAN P, et al. Structural characterization of polypropylene/poly (lactic acid) bicomponent meltblown[J]. Journal of Applied Polymer Science, 2016, 134(14): 44540-44548.
[60] 朱斐超. 尼龙11/埃洛石纳米管复合聚乳酸材料及其增强增韧熔喷非织造材料的研究[D]. 杭州: 浙江理工大学, 2019: 107-108.
ZHU Feichao. Study on polyamide 11/halloysite nanotubes hybrid poly (lactic acid) composites and reinforced and toughened melt-blown nonwovens [D]. Hangzhou: Zhejiang Sci-Tech University, 2019: 107-108.
[1] 丁倩, 邓炳耀, 李昊轩. 全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展[J]. 纺织学报, 2022, 43(01): 36-42.
[2] 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42.
[3] 贾琳, 王西贤, 李环宇, 张海霞, 覃小红. 聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 34-41.
[4] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
[5] 宋雪旸, 张岩, 徐成功, 王萍, 阮芳涛. 碳纤维/聚丙烯/聚乳酸增强复合材料的力学性能[J]. 纺织学报, 2021, 42(11): 84-88.
[6] 赖星, 王纯, 肖长发, 王黎明, 辛斌杰. 芳香族聚酰胺分离膜制备方法及应用进展[J]. 纺织学报, 2021, 42(10): 172-179.
[7] 刘强飞, 吴韶华, 杨吉震, 周蓉, 董湘琳, 宋传波, 沈照旭. 芳纶纳米纤维改性聚四氟乙烯/聚苯硫醚针刺毡的制备及其性能[J]. 纺织学报, 2021, 42(10): 47-52.
[8] 柳洋, 夏兆鹏, 王亮, 范杰, 曾强, 刘雍. 医用防护服的发展现状及趋势[J]. 纺织学报, 2021, 42(09): 195-202.
[9] 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45.
[10] 高猛, 王增元, 漏琦伟, 陈钢进. 电晕驻极熔喷聚丙烯驻极体非织造布的电荷捕获特性[J]. 纺织学报, 2021, 42(09): 52-58.
[11] 王亚宁, 周楚帆, 乌婧, 王华平. 生物基异己糖醇聚酯的制备及其构效关系研究进展[J]. 纺织学报, 2021, 42(08): 8-16.
[12] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95-100.
[13] 文玉峰, 马晓谱, 盛方园, 朱志国. 微胶囊化膨胀型阻燃剂的制备及其在聚乳酸中的应用[J]. 纺织学报, 2021, 42(06): 71-77.
[14] 潘宏杰, 杨小兵, 周川, 张守鑫, 常素芹, 罗宏森. 新型冠状病毒防护口罩过滤效率测试标准比对[J]. 纺织学报, 2021, 42(06): 97-105.
[15] 苏梦茹, 邹婷, 陈颀超, 李超婧, 王富军, 王璐. 医用倒刺缝合线的研究进展[J]. 纺织学报, 2021, 42(05): 178-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[3] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[4] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[5] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[6] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[7] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[8] 姚玉元;陈文兴;张利;潘勇. 催化氧化型消臭蚕丝纤维的研究[J]. 纺织学报, 2004, 25(03): 7 -8 .
[9] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[10] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .