纺织学报 ›› 2022, Vol. 43 ›› Issue (01): 80-88.doi: 10.13475/j.fzxb.20210805609
摘要:
为了实现细纱生产工艺参数优化,解决细纱生产过程中高能耗问题,提出了一种基于非支配排序遗传算法的细纱工艺参数多目标优化方法。通过分析细纱生产工艺流程,确定了影响细纱成纱质量与能耗的工艺参数,提取了评价成纱质量的关键质量评价指标,结合灰色关联理论将质量评价指标转化为综合质量指标,利用二阶响应曲面法拟合工艺参数与综合质量指标、碳排放量之间的关联关系,构建了细纱工艺参数多目标优化模型,并采用非支配排序遗传算法对模型进行寻优,得到了最佳工艺参数。结果证明:在优化后的工艺条件下,细纱生产过程中各项质量评价指标值较初始值均得到改善,碳排放量平均减少5.77%。
中图分类号:
[1] | 张友国. 碳达峰、碳中和工作面临的形势与开局思路[J]. 行政管理改革, 2021(3): 77-85. |
ZHANG Youguo. The situation and opening ideas of carbon peaking and carbon neutral work[J]. Administrative Reform, 2021(3): 77-85. | |
[2] | 杨思涵, 佟孟华, 刘睿婕, 等. 异质性工业企业碳减排状态与路径的比较[J]. 中国环境科学, 2019, 39(6): 2678-2688. |
YANG Sihan, TONG Menghua, LIU Ruijie, et al. Comparison of carbon emission reduction status and pathways of heterogeneous industrial enterprises[J]. China Environmental Science, 2019, 39(6): 2678-2688. | |
[3] | 李雪月, 徐文杰, 朱进忠, 等. 纯棉普梳纱碳足迹的计算方法[J]. 棉纺织技术, 2014, 42(9): 19-23. |
LI Xueyue, XU Wenjie, ZHU Jinzhong, et al. Calculation method of carbon footprint of cotton plain carding yarn[J]. Cotton Textile Technology, 2014, 42(9): 19-23. | |
[4] | 左丹, 杨维凯. 纺纱企业电耗分析与节能实践[J]. 棉纺织技术, 2017, 45(8): 32-37. |
ZUO Dan, YANG Weikai. Power consumption analysis and energy saving practice of spinning enterprises[J]. Cotton Textile Technology, 2017, 45(8): 32-37. | |
[5] |
LIU Y, HUANG H, REN F, et al. Cradle-to-gate water and carbon footprint assessment of melange yarns manufacturing[J]. Procedia CIRP, 2020, 90:198-202.
doi: 10.1016/j.procir.2020.01.051 |
[6] |
TSAI W H. Green production planning and control for the textile industry by using mathematical programming and industry 4.0 techniques[J]. Energies, 2018, 11(8): 2072.
doi: 10.3390/en11082072 |
[7] |
OZTURK E, CINPERI N C, KITIS M. Improving energy efficiency using the most appropriate techniques in an integrated woolen textile facility[J]. Journal of Cleaner Production, 2020, 254:120145.
doi: 10.1016/j.jclepro.2020.120145 |
[8] |
SIM J, PRABHU V. The life cycle assessment of energy and carbon emissions on wool and nylon carpets in the United States[J]. Journal of Cleaner Production, 2018, 170:1231-1243.
doi: 10.1016/j.jclepro.2017.09.203 |
[9] |
DIYALEY S, CHAKRABORTY S . Teaching-learning-based optimization of ring and rotor spinning processes[J]. Soft Computing, 2021, 25(15): 10287-10307.
doi: 10.1007/s00500-021-05990-0 |
[10] | 刘文珊, 吴雄英, 丁雪梅. 毛纱产品工业碳足迹的核算[J]. 毛纺科技, 2015, 43(2): 57-61. |
LIU Wenshan, WU Xiongying, DING Xuemei. Accounting for the industrial carbon footprint of wool yarn products[J]. Wool Textile Journal, 2015, 43(2): 57-61. | |
[11] | 王晓锋, 朱晨, 袁阴. 基于供应链的纺织行业节能减排决策[J]. 纺织学报, 2019, 40(1): 166-174. |
WANG Xiaofeng, ZHU Chen, YUAN Yin. Supply chain-based decision making for energy saving and emission reduction in textile industry[J]. Journal of Textile Research, 2019, 40(1): 166-174. | |
[12] | 顾燕, 薛元, 徐志武, 等. 三通道数码纺段彩纱的工艺参数优化[J]. 棉纺织技术, 2019, 47(1): 59-63. |
GU Yan, XUE Yuan, XU Zhiwu, et al. Optimization of process parameters for three-channel digital spinning of segmental colored yarn[J]. Cotton Textile Technology, 2019, 47(1): 59-63. | |
[13] | 王青, 王贯超. FA322B并条机牵伸机构主牵伸区部分参数的优化设计[J]. 纺织学报, 2017, 38(8): 139-143. |
WANG Qing, WANG Guanchao. Optimal design of some parameters of the main drafting zone of FA322B drawing mechanism of the drawing machine[J]. Journal of Textile Research, 2017, 38(8): 139-143. | |
[14] | 吴震宇, 陈小天, 石鹏飞, 等. 采用响应曲面法的纱线空气捻接参数优化[J]. 纺织学报, 2016, 37(1): 41-46. |
WU Zhenyu, CHEN Xiaotian, SHI Pengfei, et al. Optimization of yarn air twist parameters using response surface method[J]. Journal of Textile Research, 2016, 37(1): 41-46. | |
[15] | 纺织工业“十三五”发展规划[J]. 纺织科技进展, 2016(10): 2-4. |
Textile industry "Thirteenth Five-Year Plan" development plan[J]. Textile Science and Technology Progress, 2016(10): 2-4. | |
[16] | 章友鹤, 赵连英. 环锭细纱机的技术进步与创新[J]. 纺织导报, 2015(1): 52-57. |
ZHANG Youhe, ZHAO Lianying. Technological progress and innovation of ring spinning machine[J]. China Textile Leader, 2015(1): 52-57. | |
[17] | 祝庆利, 曲翠平. 赛络纺棉/氨纶包芯纱纱疵成因及其预防措施[J]. 毛纺科技, 2020, 48(9): 25-29. |
ZHU Qingli, QU Cuiping. Causes of cotton/spandex corespun yarn defects and their preventive measures in cyclo-spinning[J]. Wool Textile Journal, 2020, 48(9): 25-29. | |
[18] | 邵景峰, 马创涛, 王蕊超, 等. 基于碳排放核算的涤纶低弹丝生产工艺优化[J]. 纺织学报, 2019, 40(2): 166-172. |
SHAO Jingfeng, MA Chuangtao, WANG Ruichao, et al. Optimization of production process of polyester low stretch yarn based on carbon emission accounting[J]. Journal of Textile Research, 2019, 40(2): 166-172. | |
[19] | 辜小花, 邱奎, 李太福, 等. 基于大数据的高含硫天然气脱硫工艺优化[J]. 天然气工业, 2016, 36(9): 107-114. |
GU Xiaohua, QIU Kui, LI Taifu, et al. Optimization of high-sulfur natural gas desulfurization process based on big data[J]. Natural Gas Industry, 2016, 36(9): 107-114. |
[1] | 丁倩, 邓炳耀, 李昊轩. 全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展[J]. 纺织学报, 2022, 43(01): 36-42. |
[2] | 纪柏林, 王碧佳, 毛志平. 纺织染整领域支撑低碳排放的关键技术[J]. 纺织学报, 2022, 43(01): 113-121. |
[3] | 邵景峰, 李宁, 蔡再生. 基于模糊多准则的涤纶低弹丝生产工艺参数优化[J]. 纺织学报, 2021, 42(01): 46-52. |
[4] | 张旭靖, 王立川, 陈雁. 服装缝制生产物料的低碳配送路径优化[J]. 纺织学报, 2020, 41(03): 143-147. |
[5] | 邵景峰, 马创涛, 王蕊超, 袁玉楼, 王希尧, 牛一凡. 基于碳排放核算的涤纶低弹丝生产工艺优化[J]. 纺织学报, 2019, 40(02): 166-172. |
[6] | 林惠婷, 高备, 张玉泽, 史倩倩, 汪军. 转杯纺旁路通道设计对成纱质量的影响[J]. 纺织学报, 2019, 40(02): 153-158. |
[7] | 查刘根, 谢春萍. 应用四层BP神经网络的棉纱成纱质量预测[J]. 纺织学报, 2019, 40(01): 52-56. |
[8] | 杨瑞华 刘超 薛元 高卫东. 转杯复合纺成纱器内流场模拟及纱线质量分析[J]. 纺织学报, 2018, 39(03): 26-30. |
[9] | 罗婷 纪峰 程隆棣 吉宜军 邓万胜. 双S曲线软牵伸纺纱技术[J]. 纺织学报, 2017, 38(07): 34-38. |
[10] | 刘笑莹 方斌 朱守艾 程隆棣 张瑞云 俞建勇. 棉/大麻纤维混纺低损耗工艺优化[J]. 纺织学报, 2017, 38(01): 35-39. |
[11] | 俞璐 王立川 陈雁. 服装生产过程碳排放量核算[J]. 纺织学报, 2016, 37(4): 160-164. |
[12] | 汪兴锋 徐伯俊 苏旭中 陈松 戴家雨. 集聚纺系统在绢纺细纱机中的应用[J]. 纺织学报, 2016, 37(4): 124-127. |
[13] | 俞璐 王立川 陈雁. 服装生产过程碳排放计算模型[J]. 纺织学报, 2016, 37(3): 156-159. |
[14] | 钟博文 武宗文 刘新刚. 冷转移印花生产工艺的优化与技术进展[J]. 纺织学报, 2015, 36(02): 133-140. |
[15] | 倪春锋 于勤 高卫东 王鸿博 . 基于精梳毛纺系统的超短羊绒纯纺梳毛工艺与优化[J]. 纺织学报, 2013, 34(12): 28-0. |
|