纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 1-9.doi: 10.13475/j.fzxb.20211203809

• 特约论文 •    下一篇

纺织品的阻燃及多功能化研究进展

徐英俊1, 王芳2, 倪延朋1, 陈琳3, 宋飞3, 王玉忠3()   

  1. 1.青岛大学 功能纺织品与先进材料研究院, 山东 青岛 266071
    2.四川大学 高分子科学与工程学院,四川, 成都 610064
    3.四川大学 化学学院, 四川 成都 610064
  • 收稿日期:2021-12-16 修回日期:2022-01-07 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 王玉忠
  • 作者简介:徐英俊(1991—),男,教授,博士。主要研究方向为多功能阻燃纤维、纺织品及树脂基纤维复合材料。
  • 基金资助:
    国家自然科学基金项目(51991354);国家自然科学基金项目(51991350)

Research progress on flame-retardation and multi-functionalization of textiles

XU Yingjun1, WANG Fang2, NI Yanpeng1, CHEN Lin3, SONG Fei3, WANG Yuzhong3()   

  1. 1. Institute of Functional Textiles and Advanced Materials, Qingdao University, Qingdao, Shandong 266071, China
    2. College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610064, China
    3. College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
  • Received:2021-12-16 Revised:2022-01-07 Published:2022-02-15 Online:2022-03-15
  • Contact: WANG Yuzhong

摘要:

普通的纺织品大都较为易燃,为防止其被引燃导致火灾事故,对其阻燃化处理是有效的措施。差别化和多功能化是纺织品主流发展趋势,既保持固有优良特性又可阻燃的多功能纺织产品有很大的市场需求,但因该产品技术难度大而少有开发。如何因“材”制宜地设计阻燃多功能单体与助剂,使多种功能间相互协调、相互促进,再以高效的技术手段将之引入纺织品中,是发展阻燃多功能纺织品的关键。为此,以本文作者团队近年来的纺织品阻燃及多功能化相关工作为例,探讨了纺织品多种功能与其固有特性之间相互协调促进的思路。主要阐述了本体及表面阻燃多功能化技术,包括共聚引入功能结构单元的阻燃抗熔滴多功能聚酯及表面阻燃和抗菌、疏水、疏油、耐腐蚀的棉、粘胶及涤/棉混纺等织物。此外,针对目前该领域面临的挑战,介绍了前期已开展的相关研究和提出的阻燃功能化思路,期望能为发展高品质多功能纺织品提供借鉴与启发。

关键词: 纺织品, 阻燃, 多功能化, 本体阻燃抗熔滴多功能聚酯, 表面处理技术

Abstract:

Most textiles are highly flammable and often bring fire hazards. It is thus of great significance for improving flame retardancy of fabrics. Differentiation and functionalization of fabrics have become the mainstreams in both academic and industrial communities. However, flame-retardant multifunctional fabrics with well-balanced performance (e.g., softness, air permeability, comfort, and drape) have been rarely reported. Designing of functional monomers and additives with coordinated functions and then incorporating them into the fabric system via efficient technologies can be the keys to obtaining flame-retardant multifunctional fabrics. This paper presents work focusing on flame-retardant multifunctional fabrics. Some approaches towards coordination and cooperation among the multiple functions of the fabrics were discussed, and intrinsically flame-retardant and anti-dripping multifunctional polyester were introduced. Flame-retardant antibacterial, anti-corrosion, and water/oil-proof cotton and viscose fabrics, and polyester/cotton blend fabrics via surface treatments were highlighted. In addition, a brief prospect on the opportunities and challenges of the fields was provided, aiming for guiding the development of high-quality flame-retardant multifunctional fabrics.

Key words: fabric, flame retardant, multifunction, intrinsically flame-retardant and anti-dripping multifunctional polyester, surface treatment technology

中图分类号: 

  • TS195

图1

侧基苯酰亚胺苯乙炔共聚酯P(ET-co-PN)n的制备及其性能测试示意图"

图2

本文作者团队近几年报道的阻燃溶胶-凝胶体系概览"

图3

环保耐久阻燃织物的制备及涂层组分间相互作用示意图"

表1

按GB 19082—2009测试的改性复合布结果"

检测项目名称 国标要求 改性复合布
检测结果 单项判定
断裂强力/N ≥45 纵向925
横向327
符合
断裂伸长率/% ≥15 纵向91
横向219
符合
表面抗湿性/级 ≥3 3 符合
抗渗水性/kPa ≥1.67 >20.0 符合
过滤效率/% ≥70 最小值99 符合
抗合成血液穿透性/级 ≥2 6 符合
透湿率/(g·m-2·d-1) ≥2 500 4 130 符合
静电衰减性能/s ≤0.5 最大值0.05 符合

图4

阻燃超双疏表面的制备及其性能测试示意图"

[1] 王玉忠. 聚酯纤维阻燃化设计 [M]. 成都: 四川科学技术出版社, 1994.
WANG Yuzhong. Flame-retardation design of PET fibers [M]. Chengdu: Sichuan Science and Technology Press, 1994.
[2] LIU B W, ZHAO H B, WANG Y Z. Advanced flame-retardant methods for polymeric materials[J]. Adv Mater. DOI: 10.1002/adma.2107905.
doi: 10.1002/adma.2107905
[3] WANG D Y, LIU X Q, WANG J S, et al. Preparation and characterisation of a novel fire retardant PET/α-zirconium phosphate nanocomposite[J]. Polym Degrad Stabil, 2009, 94(4): 544-549.
doi: 10.1016/j.polymdegradstab.2009.01.018
[4] QU M H, WANG Y Z, LIU Y, et al. Flammability and thermal degradation behaviors of phosphorus-containing copolyester/BaSO4 nanocomposites[J]. J Appl Polym Sci, 2006, 102(1): 564-570.
doi: 10.1002/(ISSN)1097-4628
[5] GE X G, WANG D Y, WANG C, et al. A novel phosphorus-containing copolyester/montmorillonite nanocomposites with improved flame retardancy[J]. Eur Polym J, 2007, 43(7): 2882-2890.
doi: 10.1016/j.eurpolymj.2007.03.040
[6] ZHAO H B, WANG Y Z. Design and synjournal of pet-based copolyesters with flame-retardant and antidripping performance[J]. Macromol Rapid Comm, 2017, 38(23): 1700451.
doi: 10.1002/marc.v38.23
[7] 陈琳, 刘博文, 付腾, 等. 聚酯抗熔滴阻燃新方法[J]. 科学通报, 2020, 65(28/29): 3160-3172.
CHEN Lin, LIU Bowen, FU Teng, et al. New methods for flame-retarding PET without melt dripping[J]. Chinese Sci Bull, 2020, 65(28/29): 3160-3172.
doi: 10.1360/TB-2020-0911
[8] CHEN L, ZHAO H B, NI Y P, et al. 3D printable robust shape memory PET copolyesters with fire safety via π-stacking and synergistic crosslinking[J]. J Mater Chem A, 2019, 7(28): 17037-17045.
doi: 10.1039/C9TA04187G
[9] ZHANG Y, CHEN L, ZHAO J J, et al. A phosphorus-containing PET ionomer: from ionic aggregates to flame retardance and restricted melt-dripping[J]. Polym Chem, 2014, 5(6): 1982-1991.
doi: 10.1039/C3PY01030A
[10] ZHANG Y, NI Y P, HE M X, et al. Phosphorus-containing copolyesters: The effect of ionic group and its analogous phosphorus heterocycles on their flame-retardant and anti-dripping performances[J]. Polymer, 2015, 60:50-61.
doi: 10.1016/j.polymer.2015.01.030
[11] WU W S, NI Y P, CHEN L, et al. Trinity effect of potassium sulfonate-benzimidozale towards self-intumescent flame-retarded polyester with low fire hazards[J]. Chem Eng J, 2022, 429:132121.
doi: 10.1016/j.cej.2021.132121
[12] WU W S, DUAN P H, WANG Y L, et al. High-fire-safety thermoplastic polyester constructed by novel sulfonate with benzimidazole structure[J]. Sci China Mater, 2021: 1-14.
[13] ZHANG C, JIANG Z, ZHU S, et al. Eco-friendly and efficient flame-retardant cotton fabric based on a multi-hydroxyl hyperbranched phosphoramidate[J]. Cellulose, 2021, 28(3): 1857-1872.
doi: 10.1007/s10570-020-03645-1
[14] 张超, 蒋之铭, 朱少彤, 等. 超支化磷酰胺在粘胶织物阻燃整理中的应用[J]. 纺织学报, 2021, 42(7): 39-45.
ZHANG Chao, JIANG Zhiming, ZHU Shaotong, et al. Application of hyperbranched phosphoramide in flame retardant finishing of viscose fabrics[J]. J Text Res, 2021, 42(7): 39-45.
[15] ZHANG J, CHEN B, LIU J, et al. Multifunctional antimicrobial and flame retardant cotton fabrics modified with a novel N, N-di (ethyl phosphate) biguanide[J]. Cellulose, 2020, 27(12): 7255-7269.
doi: 10.1007/s10570-020-03256-w
[16] LIU J, DONG C H, ZHANG Z, et al. Multifunctional flame-retarded and hydrophobic cotton fabrics modified with a cyclic phosphorus/polysiloxane copolymer[J]. Cellulose, 2020, 27(6): 3531-3549.
doi: 10.1007/s10570-020-03016-w
[17] DONG C, SUN L, MA X, et al. Synjournal of a novel linear α, ω-di (chloro phosphoramide) polydimethylsiloxane and its applications in improving flame-retardant and water-repellent properties of cotton fabrics[J]. Polymers, 2019, 11(11): 1829.
doi: 10.3390/polym11111829
[18] ZHANG J, WANG H, SUN L, et al. A novel polydimethylsiloxane comb-shaped copolymer containing P-N elements toward cotton fabrics: flame retardancy and antibacterial property[J]. Cellulose, 2021, 28(18): 11595-11608.
doi: 10.1007/s10570-021-04235-5
[19] 张姣姣, 李雨洋, 刘云, 等. 棉/粘胶混纺织物的阻燃抗菌整理[J]. 纺织学报, 2021, 42(7): 31-38.
ZHANG Jiaojiao, LI Yuyang, LIU Yun, et al. Flame retardant and antibacterial treatments for cotton-viscose blended fabrics[J]. J Text Res, 2021, 42(7): 31-38.
[20] WANG S, LIU J, SUN L, et al. Preparation of flame-retardant/dyed cotton fabrics: flame retardancy, dyeing performance and flame retardant/dyed mechanism[J]. Cellulose, 2020, 27(17): 10425-10440.
doi: 10.1007/s10570-020-03469-z
[21] XU D, WANG S, HU J, et al. Enhancing antibacterial and flame-retardant performance of cotton fabric with an iminodiacetic acid-containing N-halamine[J]. Cellulose, 2021, 28(5): 3265-3277.
doi: 10.1007/s10570-021-03716-x
[22] RICHARDSON J J, CUI J, BJORNMALM M, et al. Innovation in layer-by-layer assembly[J]. Chem Rev, 2016, 116(23): 14828-14867.
doi: 10.1021/acs.chemrev.6b00627
[23] QIU X, LI Z, LI X, et al. Flame retardant coatings prepared using layer by layer assembly: a review[J]. Chem Eng J, 2018, 334:108-122.
doi: 10.1016/j.cej.2017.09.194
[24] LI Y C, SCHULZ J, GRUNLAN J C. Polyelectrolyte/nanosilicate thin-film assemblies: influence of pH on growth, mechanical behavior, and flammability[J]. ACS Appl Mater Interfaces, 2009, 1(10): 2338-2347.
doi: 10.1021/am900484q
[25] YANG J C, LIAO W, DENG S B, et al. Flame retardation of cellulose-rich fabrics via a simplified layer-by-layer assembly[J]. Carbohyd Polym, 2016, 151:434-440.
doi: 10.1016/j.carbpol.2016.05.087
[26] WANG B, XU Y J, LI P, et al. Flame-retardant polyester/cotton blend with phosphorus/nitrogen/silicon-containing nano-coating by layer-by-layer assembly[J]. Appl Surf Sci, 2020, 509:145323.
doi: 10.1016/j.apsusc.2020.145323
[27] LI P, WANG B, LIU Y Y, et al. Fully bio-based coating from chitosan and phytate for fire-safety and antibacterial cotton fabrics[J]. Carbohyd Polym, 2020, 237:116173.
doi: 10.1016/j.carbpol.2020.116173
[28] LI P, LIU C, WANG B, et al. Eco-friendly coating based on an intumescent flame-retardant system for viscose fabrics with multi-function properties: flame retardancy, smoke suppression, and antibacterial properties[J]. Prog Org Coat, 2021, 159:106400.
[29] LI P, LIU C, XU Y J, et al. Novel and eco-friendly flame-retardant cotton fabrics with lignosulfonate and chitosan through LBL: flame retardancy, smoke suppression and flame-retardant mechanism[J]. Polym Degrad Stabil, 2020, 181:109302.
doi: 10.1016/j.polymdegradstab.2020.109302
[30] LI Z F, ZHANG C J, CUI L, et al. Fire retardant and thermal degradation properties of cotton fabrics based on APTES and sodium phytate through layer-by-layer assembly[J]. J Anal Appl Pyrol, 2017, 123:216-223.
doi: 10.1016/j.jaap.2016.11.026
[31] CIRIMINNA R, FIDALGO A, PANDARUS V, et al. The sol-gel route to advanced silica-based materials and recent applications[J]. Chem Rev, 2013, 113(8): 6592-6620.
doi: 10.1021/cr300399c
[32] MALUCELLI G, CAROSIO F, ALONGI J, et al. Materials engineering for surface-confined flame retardancy[J]. Mater Sci Eng R, 2014, 84:1-20.
doi: 10.1016/j.mser.2014.08.001
[33] ALONGI J, MALUCELLI G. State of the art and perspectives on sol-gel derived hybrid architectures for flame retardancy of textiles[J]. J Mater Chem, 2012, 22(41): 21805-21809.
doi: 10.1039/C2JM32513F
[34] KUNDU C K, WANG X, HOU Y, et al. Construction of flame retardant coating on polyamide 6.6 via UV grafting of phosphorylated chitosan and sol-gel process of organo-silane[J]. Carbohyd Polym, 2018, 181:833-840.
doi: 10.1016/j.carbpol.2017.11.069
[35] JIANG Z, LI H, HE Y, et al. Flame retardancy and thermal behavior of cotton fabrics based on a novel phosphorus-containing siloxane[J]. Appl Surf Sci, 2019, 479:765-775.
doi: 10.1016/j.apsusc.2019.02.159
[36] LIU J, DONG C, ZHANG Z, et al. Durable flame retardant cotton fabrics modified with a novel silicon-phosphorus-nitrogen synergistic flame retardant[J]. Cellulose, 2020, 27(15): 9027-9043.
doi: 10.1007/s10570-020-03370-9
[37] LIU Y, PAN Y T, WANG X, et al. Effect of phosphorus-containing inorganic-organic hybrid coating on the flammability of cotton fabrics: synjournal, characterization and flammability[J]. Chem Eng J, 2016, 294:167-175.
doi: 10.1016/j.cej.2016.02.080
[38] XU D, GAO Z, XU B, et al. A facile and effective flame-retardant coating for cotton fabric with α-aminodiphosphonate siloxane[J]. Polym Degrad Stabil, 2020, 180:109312.
doi: 10.1016/j.polymdegradstab.2020.109312
[39] JIANG Z, XU D, MA X, et al. Facile synjournal of novel reactive phosphoramidate siloxane and application to flame retardant cellulose fabrics[J]. Cellulose, 2019, 26(9): 5783-5796.
doi: 10.1007/s10570-019-02465-2
[40] WANG S, XU D, LIU Y, et al. Preparation and mechanism of phosphoramidate-based sol-gel coating for flame-retardant viscose fabric[J]. Polym Degrad Stabil, 2021, 190:109620.
doi: 10.1016/j.polymdegradstab.2021.109620
[41] ZHU Z M, XU Y J, LIAO W, et al. Highly flame retardant expanded polystyrene foams from phosphorus-nitrogen-silicon synergistic adhesives[J]. Ind Eng Chem Res, 2017, 56(16): 4649-4658.
doi: 10.1021/acs.iecr.6b05065
[42] LI P, WANG B, XU Y J, et al. Ecofriendly flame-retardant cotton fabrics: preparation, flame retardancy, thermal degradation properties, and mechanism[J]. ACS Sustain Chem Eng, 2019, 7(23): 19246-19256.
doi: 10.1021/acssuschemeng.9b05523
[43] TAO Y, LIU C, LI P, et al. A flame-retardant PET fabric coating: flammability, anti-dripping properties, and flame-retardant mechanism[J]. Prog Org Coat, 2021, 150:105971.
[44] WANG Q Z, LIU C, XU Y J, et al. Highly efficient flame retardation of polyester fabrics via novel DOPO-modified sol-gel coatings[J]. Polymer, 2021, 226:123761.
doi: 10.1016/j.polymer.2021.123761
[45] ZHANG A N, ZHAO H B, CHENG J B, et al. Construction of durable eco-friendly biomass-based flame-retardant coating for cotton fabrics[J]. Chem Eng J, 2021, 410:128361.
doi: 10.1016/j.cej.2020.128361
[46] WANG F, LI J Y, PI J, et al. Superamphiphobic and flame-retardant coatings with highly chemical and mechanical robustness[J]. Chem Eng J, 2021, 421:127793.
doi: 10.1016/j.cej.2020.127793
[1] 金文杰, 程献伟, 关晋平, 陈国强. 聚酰胺6织物的磺胺阻燃抗熔滴整理[J]. 纺织学报, 2022, 43(02): 171-175.
[2] 李加双, 张丽平, 付少海. 双稳态电致变色离子凝胶的制备及其在织物上的应用[J]. 纺织学报, 2022, 43(02): 24-29.
[3] 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73.
[4] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[5] 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(01): 1-8.
[6] 董爽, 孔昱萤, 关晋平, 程献伟, 陈国强. 废旧涤纶/棉混纺军训服的化学分离回收[J]. 纺织学报, 2022, 43(01): 178-185.
[7] 杨星, 李轻舟, 吴敏, 周永凯. 欧盟纺织产业链上的绿色循环及废旧纺织品处理关键问题[J]. 纺织学报, 2022, 43(01): 106-112.
[8] 韩非, 郎晨宏, 邱夷平. 废旧纺织品资源化循环利用研究进展[J]. 纺织学报, 2022, 43(01): 96-105.
[9] 方寅春, 孙卫昊. 阻燃纤维素气凝胶研究进展[J]. 纺织学报, 2022, 43(01): 43-48.
[10] 纪柏林, 王碧佳, 毛志平. 纺织染整领域支撑低碳排放的关键技术[J]. 纺织学报, 2022, 43(01): 113-121.
[11] 高强, 王晓, 郭亚杰, 陈茹, 魏菊. 棉基Ti3C2Tx油水分离膜的制备及其性能[J]. 纺织学报, 2022, 43(01): 172-177.
[12] 陈子晗, 姚勇波, 生俊露, 颜志勇, 张玉梅, 王华平. 纤维素/海藻酸钙共混纤维的制备及其性能[J]. 纺织学报, 2021, 42(12): 15-20.
[13] 王晓辉, 刘国金, 邵建中. 纺织品仿生结构生色[J]. 纺织学报, 2021, 42(12): 1-14.
[14] 刘新华, 刘海龙, 方寅春, 严鹏, 侯广开. 聚乙烯亚胺/植酸层层自组装阻燃涤/棉混纺织物制备及其性能[J]. 纺织学报, 2021, 42(11): 103-109.
[15] 陈智杰, 虞一浩, 符晔, 雷鹏飞, 蒋继康, 戚栋明. 柔性阻燃聚酰胺湿法涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(11): 110-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[2] 张金秋;张华;郝新敏;姜凤琴. 大麻纤维高温煮练时间与脱胶质量的关系[J]. 纺织学报, 2006, 27(2): 81 -83 .
[3] 陈维国;戴瑾瑾;王俊苏;贾成通;汪智勇;孟照成. 高耐光色牢度还原染料对涤纶织物的热熔法染色[J]. 纺织学报, 2008, 29(9): 82 -86 .
[4] 李重;. 双圆弧在服装纸样设计中的应用[J]. 纺织学报, 2005, 26(5): 101 -102 .
[5] 崔毅华. 玄武岩连续纤维的基本特性[J]. 纺织学报, 2005, 26(5): 120 -121 .
[6] 李发学;张广平;吴丽莉;俞建勇. 三羟甲基乙烷/新戊二醇二元体系的DSC研究[J]. 纺织学报, 2004, 25(05): 59 -60 .
[7] 周赳;吴文正. 有彩数码提花织物的创新设计原理和方法[J]. 纺织学报, 2006, 27(5): 6 -9 .
[8] 杨俊霞;张力. 包缠纱织物的设计与生产[J]. 纺织学报, 1990, 11(12): 32 -34 .
[9] 李利君;蒲宗耀;李风;王桦;兰彬. 聚苯硫醚纤维的热降解动力学[J]. 纺织学报, 2010, 31(12): 4 -8 .
[10] 焦亚男;李嘉禄. 异制件用三维编织复合材料的拉伸性能[J]. 纺织学报, 2006, 27(9): 1 -4 .