纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 125-131.doi: 10.13475/j.fzxb.20210902007
姚若彤1,2, 赵婧媛1, 闫一欣1, 段立蓉1,2, 王恬3, 严佳1,2, 张淑军1, 李刚1,2()
YAO Ruotong1,2, ZHAO Jingyuan1, YAN Yixin1, DUAN Lirong1,2, WANG Tian3, YAN Jia1,2, ZHANG Shujun1, LI Gang1,2()
摘要:
为研制具有良好力学性能和生物相容性的人工神经导管,采用编织工艺、静电纺丝技术和冷冻干燥技术制备一种含有壳聚糖涂层-编织层-纤维海绵层的3层复合结构人工神经导管,研究轴纱、内外层结构和镁离子质量浓度对其性能的影响,并对导管的表面形貌、力学性能、离子缓释性能和生物相容性进行表征。结果表明:轴纱和编织纱共同参与编织时,神经导管形变50%的径向压缩性能为1.3 N,轴纱断裂时的轴向拉伸应力为30 N,具有良好的力学性能;导管内海绵层呈相互连通的多孔结构,孔径分布均匀(0.04~0.08 mm);导管内镁离子可缓慢释放28 d;当镁离子溶液质量浓度为0.02 g/mL时,导管对细胞增殖的促进作用最显著。这为神经导管的材料选择和结构优化提供新思路。
中图分类号:
[1] | AHN H S, HWANG J Y, KIM M S, et al. Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve[J]. Acta Biomaterialia, 2015(13): 324-334. |
[2] | WEI C, MUNISH B S, LEE P, et al. Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration[J]. Acta Biomaterialia, 2018(73): 302-311. |
[3] | CHIONO V, TONDA-TURO C. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering[J]. Progress in Neurobiology, 2015(131): 87-104. |
[4] | XUE C, ZHU H, TAN D, et al. Electrospun silk fibroin-based neural scaffold for bridging a long sciatic nerve gap in dogs[J]. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(2): 1143-1153. |
[5] | FAROKHI M, MOTTAGHITALAB F, SHOKRGOZAR M A, et al. Prospects of peripheral nerve tissue engineering using nerve guide conduits based on silk fibroin protein and other biopolymers[J]. International Materials Reviews, 2017, 62(7): 367-391. |
[6] | SARKER M D, NAGHIEH S, MCINNES A D, et al. Regeneration of peripheral nerves by nerve guidance conduits: influence of design, biopolymers, cells, growth factors, and physical stimuli[J]. Progress in Neurobiology, 2018(171): 125-150. |
[7] | 严佳, 李刚. 医用纺织品的研究进展[J]. 纺织学报, 2020, 41(9): 191-200. |
YAN Jia, LI Gang. Research progress on medical textiles[J]. Journal of Textile Research, 2020, 41(9): 191-200. | |
[8] | 门永芝, 於子卫. 生物材料构建神经导管修复周围神经损伤的研究进展[J]. 听力学及言语疾病杂志, 2014, 22(6): 654-658. |
MEN Yongzhi, YU Ziwei. Research progress of nerve conduit constructed by biomaterials in repairing peripheral nerve injury[J]. Journal of Audiology and Speech Pathology, 2014, 22(6): 654-658. | |
[9] |
GODAVITARNE C, ROBERTSON A, PETERS J, et al. Biodegradable materials[J]. Orthopaedics and Trauma, 2017, 31(5): 316-320.
doi: 10.1016/j.mporth.2017.07.011 |
[10] |
LI G, LIU J, ZHENG Z, et al. Structural mimetic silk fiber-reinforced composite scaffolds using multi-angle fibers[J]. Macromolecular Bioscience, 2015, 15(8): 1125-1133.
doi: 10.1002/mabi.201400502 |
[11] | ZHANG Z, ZHAO Z, ZHENG Z, et al. Functionalization of polyethylene terephthalate fabrics using nitrogen plasma and silk fibroin/chitosan microspheres[J]. Applied Surface Science, 2019(495): 143481. |
[12] | TIAN Y, WU Q, LI F, et al. A flexible and biocompatible bombyx mori silk fibroin/wool keratin composite scaffold with interconnective porous struc-ture[J]. Colloids and Surfaces B: Biointerfaces, 2021(208): 112080. |
[13] |
FAROKHI M, MOTTAGHITALAB F, SHOKRGOZAR M A, et al. Prospects of peripheral nerve tissue engineering using nerve guide conduits based on silk fibroin protein and other biopolymers[J]. International Materials Reviews, 2017, 62(7): 367-391.
doi: 10.1080/09506608.2016.1252551 |
[14] |
ANITHA A, SOWMYA S, KUMAR P, et al. Chitin and chitosan in selected biomedical applications[J]. Progress in Polymer Science, 2014, 39(9): 1644-1667.
doi: 10.1016/j.progpolymsci.2014.02.008 |
[15] |
VENNEMEYER J J, HOPKINS T, HERSHCOVITCH M, et al. Initial observations on using magnesium metal in peripheral nerve repair[J]. Journal of Biomaterials Applications, 2015, 29(8): 1145-1154.
doi: 10.1177/0885328214553135 |
[16] |
PARHAM S, KHARAZI A Z, BAKHSHESHI-RAD H R, et al. Electrospun nano-fibers for biomedical and tissue engineering applications: a comprehensive review[J]. Materials 2020, 13(9): 2153.
doi: 10.3390/ma13092153 |
[17] | 徐云强, 刘迎节, 李瑞欣, 等. 胶原/丝素蛋白神经导管修复周围神经缺损的研究与应用进展[J]. 中国组织工程研究, 2016, 20(38): 5745-5751. |
XU Yunqiang, LIU Yingjie, LI Ruixin, et al. Collagen/silk fibroin nerve conduits used for repairing peripheral nerve defect: application and development[J]. Chinese Journal of Tissue Engineering Research, 2016, 20(38): 5745-5751. | |
[18] |
ZHENG Z, GUO S, LIU Y, et al. Lithium-free processing of silk fibroin[J]. Journal of Biomaterials Applications, 2016, 31(3): 450-463.
doi: 10.1177/0885328216653259 |
[19] | YANG Y, WANG H, YAN F, et al. Bioinspired porous octacalcium phosphate/silk fibroin composite coating materials prepared by electrochemical deposition[J]. ACS Applied Materials & Interfaces, 2015, 7(10): 5634-5642. |
[20] |
ZHU M, WANG K, MEI J, et al. Fabrication of highly interconnected porous silk fibroin scaffolds for potential use as vascular grafts[J]. Acta Biomaterialia, 2014, 10(5): 2014-2023.
doi: 10.1016/j.actbio.2014.01.022 |
[21] | XIE X, YU J, ZHAO Z, et al. Fabrication and drug release properties of curcumin-loaded silk fibroin nanofibrous membranes[J]. Adsorption Science & Technology, 2019, 37(5-6): 412-424. |
[22] |
HSUEH Y, CHANG Y, HUANG T, et al. Functional recoveries of sciatic nerve regeneration by combining chitosan-coated conduit and neurosphere cells induced from adipose-derived stem cells[J]. Biomaterials, 2014, 35(7): 2234-2244.
doi: 10.1016/j.biomaterials.2013.11.081 |
[23] | 黄笛, 李芳, 李刚. 涤纶/蚕丝机织心脏瓣膜的制备及其性能[J]. 纺织学报, 2021, 42(2): 74-79. |
HUANG Di, LI Fang, LI Gang. Preparation and performance of polyester/silk woven heart valve[J]. Journal of Textile Research, 2021, 42(2): 74-79. | |
[24] | ZHANG S, WANG J, ZHENG Z, et al. Porous nerve guidance conduits reinforced with braided composite structures of silk/magnesium filaments for peripheral nerve repair[J/OL]. Acta Biomaterialia, 2021 [2021-09-05]. https://doi.org/10.1016/j.actbio.2021.07.02. |
[25] |
XU T, DING Y C, WANG Z, et al. Three-dimensional and ultralight sponges with tunable conductivity assembled from electrospun nanofibers for a highly sensitive tactile pressure sensor[J]. Journal of Materials Chemistry C, 2017, 5(39): 10288-10294.
doi: 10.1039/C7TC03456C |
[26] |
KIM S M, LEE M S, JEON J, et al. Biodegradable nerve guidance conduit with microporous and micropatterned poly(lactic-co-glycolic acid)-accelerated sciatic nerve regeneration[J]. Macromolecular Bioscience, 2018, 18(12): 1800290.
doi: 10.1002/mabi.v18.12 |
[1] | 朱斐超, 张宇静, 张强, 叶翔宇, 张恒, 汪伦合, 黄瑞杰, 刘国金, 于斌. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(01): 49-57. |
[2] | 姜雨淋, 王卉, 张克勤. 生物3D打印用丝素蛋白基凝胶墨水的研究进展[J]. 纺织学报, 2021, 42(11): 1-8. |
[3] | 孙钰晟, 左保齐. 高分子聚合物硬骨缺损修复材料研究进展[J]. 纺织学报, 2021, 42(08): 175-184. |
[4] | 刘浩, 路明磊, 黄晓卫, 王娜, 王雪芳, 宁新, 明津法. 酸-醇体系丝素蛋白水凝胶制备与性能表征[J]. 纺织学报, 2021, 42(08): 41-48. |
[5] | 王亚宁, 周楚帆, 乌婧, 王华平. 生物基异己糖醇聚酯的制备及其构效关系研究进展[J]. 纺织学报, 2021, 42(08): 8-16. |
[6] | 丁梦瑶, 戴梦男, 李蒙, 刘苹, 徐晶晶, 王建南. 不同分子质量丝素蛋白的分离与表征[J]. 纺织学报, 2021, 42(07): 46-53. |
[7] | 苏梦茹, 邹婷, 陈颀超, 李超婧, 王富军, 王璐. 医用倒刺缝合线的研究进展[J]. 纺织学报, 2021, 42(05): 178-184. |
[8] | 杨亚, 闫凤祎, 王卉, 张克勤. 丝素蛋白/磷酸八钙复合材料生物界面的蛋白质吸附和细胞响应[J]. 纺织学报, 2021, 42(02): 41-46. |
[9] | 宋广州, 涂芳芳, 丁梦瑶, 戴梦男, 殷音, 董凤林, 王建南. 丝素蛋白负电性增强改性及其对降钙素基因相关肽的加载能力[J]. 纺织学报, 2020, 41(12): 7-12. |
[10] | 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14. |
[11] | 孙广东, 黄益, 邵建中, FAN Qinguo. 光交联丝素蛋白水凝胶的蓝光引发体系[J]. 纺织学报, 2020, 41(04): 64-71. |
[12] | 钟红荣, 方艳, 包红, 吴婷芳, 张小宁, 徐水, 朱勇. 丝素基双层敷料的制备及其性能[J]. 纺织学报, 2020, 41(02): 13-19. |
[13] | 张治斌, 李刚, 毛森贤, 厉巽巽, 陈玉霜, 毛青山, 李翼, 潘志娟, 王晓沁. 丝素蛋白/壳聚糖微球制备及其抗菌性能[J]. 纺织学报, 2019, 40(10): 7-12. |
[14] | 包红, 徐水, 张小宁, 成国涛, 朱勇. 家蚕丝素蛋白阳离子化及其对羊毛性状的影响[J]. 纺织学报, 2019, 40(07): 24-30. |
[15] | 林永佳, 杨董超, 张佩华, 顾岩. 再生丝素蛋白/脱细胞真皮基质共混纳米纤维膜的制备及其性能[J]. 纺织学报, 2019, 40(07): 13-18. |
|