纺织学报 ›› 2022, Vol. 43 ›› Issue (03): 176-184.doi: 10.13475/j.fzxb.20210104909

• 机械与器材 • 上一篇    下一篇

纺纱车间空调系统数学建模及动态仿真

纪杰1, 韩云龙1, 高杰2, 汪虎明2, 陆彪1   

  1. 1.安徽工业大学 建筑工程学院, 安徽 马鞍山 243032
    2.江苏精亚环境科技有限公司, 江苏 无锡 214426
  • 收稿日期:2021-01-21 修回日期:2021-06-28 出版日期:2022-03-15 发布日期:2022-03-29
  • 作者简介:纪杰(1994—),男,硕士生。主要研究方向为纺织空调系统及自控技术。

Mathematical modeling and dynamic simulation of air conditioning system in spinning workshop

JI Jie1, HAN Yunlong1, GAO Jie2, WANG Huming2, LU Biao1   

  1. 1. School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China
    2. Jiangsu Jingya Environmental Technology Co., Ltd., Wuxi, Jiangsu 214426, China
  • Received:2021-01-21 Revised:2021-06-28 Published:2022-03-15 Online:2022-03-29

摘要:

为研究纺纱车间温湿度动态变化规律,并为空调系统自控策略提供运行平台,基于热量平衡、湿量平衡和风量平衡分别建立了喷水室、纺纱车间模型;利用Python实现业务逻辑编程,利用PyQt5开发图形用户界面,建立变露点新风控制策略,基于比例积分微分(PID)算法程序实现车间温湿度的自动控制,并开发纺纱车间空调系统动态仿真平台。以某纺纱厂车间结构参数、工艺及空调设备参数为仿真平台基础数据和边界条件,对改变空调设备控制参数后车间温湿度变化进行了仿真计算。结果表明,基于纺纱车间空调系统仿真平台能计算喷水室机器露点、车间温湿度的动态变化值及稳定到车间设定温湿度时的响应时间,可对空调设备进行自动调节控制。开发的纺纱车间空调系统仿真平台具备了纺纱车间虚拟运行环境,可在此基础上进行空调系统控制策略的相关研究。

关键词: 纺纱车间, 空调系统, 数学模型, 仿真平台, PID控制算法

Abstract:

In order to study the dynamic change of temperature and humidity in spinning workshop and provide operation platform for the automatic control strategy of air conditioning system, the models of spray chamber and spinning workshop were established respectively on the basis of heat, moisture and air-volume balance. The dynamic simulation platform of spinning air conditioning system was developed by Python and PyQt5 which support business logic programming with developed graphical user interface. The fresh air control strategy of dew point was established, and the automatic control of the temperature and humidity in the workshop was achieved based on the proportional integral derivative(PID)control algorithm. Taking the structure, process and air conditioning equipment of a spinning workshop as the basic parameters and boundary conditions of the simulation platform, the temperature and humidity changes in the workshop after changing the control parameters of air conditioning equipment were simulated. The results show that the simulation platform of air conditioning system of the spinning workshop is useful to adjust and control the air conditioning equipment. It can calculate the machine dew point of spray chamber, the changing value of the temperature and humidity, and the response time when the temperature and humidity are stable to the set temperature and humidity for the workshop. The simulation platform of spinning air-conditioning system has the virtual operation environment of a spinning workshop, which can be used to study the control strategy of the air-conditioning system.

Key words: spinning workshop, air conditioning system, mathematical model, simulation platform, PID control algorithm

中图分类号: 

  • TS108.3

图1

纺纱车间空调系统模型"

图2

温度控制策略"

图3

湿度控制策略"

表1

基础设置参数"

车间初始参数 数值 车间初始参数 数值
空气密度/(kg·m-3) 1.2 墙体温升系数 40
墙体密度/(kg·m-3) 2 500 喷水室迎风面积/m2 13
空气比热容/
(kJ·kg-1·℃-1)
1.01 水泵额定转速/
(r·min-1)
2 900
墙体比热容/
(kJ·kg-1·℃-1)
0.93 水泵额定流量/
(m3·h-1)
200
车间体积/m3 14 000 送风机额定转速/
(r·min-1)
890
墙体体积/m3 100 送风机额定送风量/
(m3·s-1)
66.67

图4

仿真平台主界面"

图5

仿真参数设置"

图6

新风对机器露点温度和送风含湿量的影响"

图7

二次回风阀开度对车间温湿度的影响"

图8

送风机频率对车间温湿度的影响"

图9

车间设定参数调整时温湿度的变化"

图10

温湿度的PID自动控制"

[1] 国家统计局. 中华人民共和国2019年国民经济和社会发展统计公报[N]. 中国信息报, 2020-03-02(002).
National Bureau of Statistics of China. Statistical communique of the People's Republic of China on the 2019 national economic and social development[N]. China Information News, 2020-03-02(002).
[2] HASANBEIGI A, PRICE L. A review of energy use and energy efficiency technologies for the textile indus-try[J]. Renewable and Sustainable Energy Reviews, 2012,16(6):3648-3665.
doi: 10.1016/j.rser.2012.03.029
[3] 赵阳, 颜苏芊, 孙晓冬. 纺织企业空调系统节能技术措施[J]. 棉纺织技术, 2014,42(7):75-78.
ZHAO Yang, YAN Suqian, SUN Xiaodong. Technology measures of air conditioning system energy saving in textile enterprise[J]. Cotton Textile Technology, 2014,42(7):75-78.
[4] 邓小龙, 张建林, 陆锦军, 等. 纺织空调系统的模糊PID控制研究及应用[J]. 仪器仪表学报, 2011,32(4):763-768.
DENG Xiaolong, ZHANG Jianlin, LU Jinjun, et al. Research and application of air condition in textile industry based on fuzzy PID[J]. Chinese Journal of Scientific Instrument, 2011,32(4):763-768.
[5] YANG Ruiliang, LIU Lei, REN Yue. Thermal environment in the cotton textile workshop[J]. Energy and Buildings, 2015,102:432-441.
doi: 10.1016/j.enbuild.2015.06.024
[6] SCHICHT H. Air conditioning for Brazil's textile industry[J]. International Journal of Refrigeration, 1979,2(6):229-233.
doi: 10.1016/0140-7007(79)90088-4
[7] FILIMONOV D S, MAKAROV A A. Mathematical modeling and adjustment of the parameters of the controllers in a central air-conditioning system[J]. Fibre Chemistry, 2013,45(2):122-124.
doi: 10.1007/s10692-013-9494-0
[8] AFRAM A, JANABI-SHARIFI F. Review of modeling methods for HVAC systems[J]. Applied Thermal Engineering, 2014,67(1):507-519.
doi: 10.1016/j.applthermaleng.2014.03.055
[9] HOMOD R Z. Review on the HVAC System modeling types and the shortcomings of their application[J]. Journal of Energy, 2013,2013:1-10.
[10] XING Tian, LI Xiuming, ZHANG Jili. An identification method for room temperature dynamic model based on analytical solution in VAV system[J]. Energy and Buildings, 2018,174:134-146.
doi: 10.1016/j.enbuild.2018.06.039
[11] 郭安柱, 马永志. 空调房数学建模与仿真[J]. 科学技术创新, 2020(12):120-122.
GUO Anzhu, MA Yongzhi. Mathematical modeling and simulation of air-conditioned room[J]. Scientific and Technological Innovation, 2020(12):120-122.
[12] JIE Dong. Modeling and simulation of temperature control system of coating plant air conditioner[J]. Procedia Computer Science, 2017,107:196-201.
doi: 10.1016/j.procs.2017.03.078
[13] CHEN Yan, TREADO S. Development of a simulation platform based on dynamic models for HVAC control analysis[J]. Energy and Buildings, 2014,68:376-386.
doi: 10.1016/j.enbuild.2013.09.016
[14] 方海明, 颜苏芊, 张敏, 等. 纺织厂空调设计计算软件的开发与应用[J]. 制冷与空调(四川), 2015,29(4):398-401.
FANG Haiming, YAN Suqian, ZHANG Min. et al. Development of the air conditioning design software for the textile mill[J]. Refrigeration & Air Conditioning, 2015,29(4):398-401.
[15] MUSTAFARAJ G, CHEN J, LOWRY G. Development of room temperature and relative humidity linear parametric models for an open office using BMS data[J]. Energy and Buildings, 2010,42(3):348-356.
doi: 10.1016/j.enbuild.2009.10.001
[16] YAO Ye, YANG Kun, HUANG Mengwei, et al. A state-space model for dynamic response of indoor air temperature and humidity[J]. Building and Environment, 2013,64:26-37.
doi: 10.1016/j.buildenv.2013.03.009
[17] 毛灿, 李化淼, 牛萌萌, 等. 国内喷水室的研究现状[J]. 制冷与空调, 2014,24(9):45-49.
MAO Can, LI Huamiao, NIU Mengmeng, et al. Research status of the air washers in China[J]. Refrigeration and Air-Conditioning, 2014,24(9):45-49.
[18] WIKSTEN R, ASSAD M E H. Heat and mass transfer characteristics in a spray chamber[J]. International Journal of Refrigeration, 2007,30(7):1207-1214.
doi: 10.1016/j.ijrefrig.2007.02.013
[19] 李新禹, 陈杰, 金星, 等. 温湿度独立控制空调技术在细纱车间的应用[J]. 纺织学报, 2009,30(2):112-116.
LI Xinyu, CHEN Jie, JIN Xing, et al. Application of temperature and humidity independent controlled air-conditioning technology in spinning department[J]. Journal of Textile Research, 2009,30(2):112-116.
[20] 高龙. 现代纺织空调工程[M]. 北京: 中国纺织出版社, 2018:68-69.
GAO Long. Modern textile air conditioning engineer-ing[M]. Beijing: China Textile & Apparel Press, 2018: 68-69.
[21] 雷翔霄, 徐立娟, 唐春霞. 基于神经网络PID算法的镀液温度控制系统[J]. 电镀与精饰, 2020,42(8):39-42.
LEI Xiangxiao, XU Lijuan, TANG Chunxia. Bath temperature control system based on neural network PID[J]. Plating & Finishing, 2020,42(8):39-42.
[22] 张桂林, 李锋, 耿云飞. 基于增量式PID控制的空气热源泵供水机温度控制系统设计[J]. 计算机与数字工程, 2021,49(2):268-271.
ZHANG Guilin, LI Feng, GENG Yunfei. Design of temperature control system for air heat pump water supply machine based on incremental PID control[J]. Computer & Digital Engineering, 2021,49(2):268-271.
[23] CHEN Yi, YAN Huaxia, LUO Yimo, et al. A proportional-integral (PI) law based variable speed technology for temperature control in indirect evaporative cooling system[J]. Applied Energy, 2019,251:113390.
doi: 10.1016/j.apenergy.2019.113390
[24] 王维波, 贾宝鹃, 张晓东. Python Qt GUI与数据可视化编程[M]. 北京: 人民邮电出版社, 2019: 21-34.
WANG Weibo, JIA Baojuan, ZHANG Xiaodong. Python Qt GUI and data visualization programming[M]. Beijing: Posts & Telecom Press, 2019: 21-34.
[1] 沈颖乐, 丛洪莲, 俞旭良, 郑培晓. 无缝成形产品工艺设计模型建立及其系统实现[J]. 纺织学报, 2021, 42(07): 89-94.
[2] 向忠, 王宇航, 吴金波, 钱淼, 胡旭东. 过氧化氢检测方法研究进展[J]. 纺织学报, 2020, 41(10): 197-204.
[3] 郑小虎, 鲍劲松, 马清文, 周衡, 张良山. 基于模拟退火遗传算法的纺纱车间调度系统[J]. 纺织学报, 2020, 41(06): 36-41.
[4] 徐云龙, 夏风林. 双针床经编机间隔距离对纱线需求量的影响分析[J]. 纺织学报, 2019, 40(08): 151-156.
[5] 任荟颖, 邹鲲, 胡小荣. 化纤长丝自动落卷系统仿真平台开发[J]. 纺织学报, 2019, 40(07): 151-157.
[6] 姚江薇 邹专勇 闫琳琳 卫国 唐佩君. 喷气涡流纺纱线拉伸断裂强力预测模型构建与验证[J]. 纺织学报, 2018, 39(10): 32-37.
[7] 闫亦农 刘立枝 雒彬钰 崔慧荣. 基于粒子群算法的服装生产流水线编制[J]. 纺织学报, 2018, 39(10): 120-124.
[8] 张东 孟婥. 纱筒残余氨的扩散过程建模与数值模拟[J]. 纺织学报, 2017, 38(09): 149-154.
[9] 常玉萍 马丕波. 基于网眼结构的负泊松比经编间隔织物模型及其拉伸性能[J]. 纺织学报, 2017, 38(09): 59-65.
[10] 韩晓果 肖学良 钱坤. 紧密机织物高气压下面外变形的机制[J]. 纺织学报, 2017, 38(07): 49-55.
[11] 张宁 李忠健 潘如如 高卫东 韩要宾. 采用色纺纱图像的真实感色织物模拟[J]. 纺织学报, 2017, 38(05): 37-42.
[12] 李忠健 潘如如 高卫东. 应用纱线序列图像的电子织物构建[J]. 纺织学报, 2016, 37(3): 35-40.
[13] 罗娟 郗欣甫 孙以泽. 用于簇绒地毯织机的新型钩刀割绒机构[J]. 纺织学报, 2016, 37(06): 118-123.
[14] 王敏超 熊杰. 双轴向不同拉伸速率下丝素蛋白/聚已内酯复合纳米纤维膜的力学性能[J]. 纺织学报, 2015, 36(06): 18-23.
[15] 王敏超 熊杰. 取向排列丝素蛋白/聚已内酯复合纳米纤维膜的双轴向拉伸性能[J]. 纺织学报, 2015, 36(04): 31-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!