纺织学报 ›› 2022, Vol. 43 ›› Issue (03): 201-209.doi: 10.13475/j.fzxb.20201104309

• 综合述评 • 上一篇    下一篇

纳米纤维负载型纳米零价铁基材料在环境修复中的应用研究进展

金旭1,2,3, 刘方1,2,3, 杜嬛4, 华超4, 公旭中4, 张秀芹1,2,3, 汪滨1,2,3()   

  1. 1.北京服装学院 材料设计与工程学院, 北京 100029
    2.北京服装学院 服装材料研究开发与评价北京市重点实验室, 北京 100029
    3.北京市纺织纳米纤维工程技术研究中心, 北京 100029
    4.中国科学院过程工程研究所 中国科学院绿色过程与工程重点实验室, 北京 100190
  • 收稿日期:2020-11-19 修回日期:2021-08-14 出版日期:2022-03-15 发布日期:2022-03-29
  • 通讯作者: 汪滨
  • 作者简介:金旭(1999—),男,硕士生。主要研究方向为功能与智能纤维材料。
  • 基金资助:
    国家重点研发计划项目(2020YFC1909605);国家级大学生创新创业训练计划项目(2020100120832);国家级大学生创新创业训练计划项目(202110012001);中国科学院绿色过程制造创新研究院联合基金项目(IAGM2020C08);北京高等学校“实培计划”项目(RCPY1903-30227);北京服装学院教改重点项目(ZDJG-1903);北京青少年创新学院“翱翔计划”项目(H2019-80)

Research progress in nanofiber supported nano zero-valent-iron based materials in environmental remediation

JIN Xu1,2,3, LIU Fang1,2,3, DU Xuan4, HUA Chao4, GONG Xuzhong4, ZHANG Xiuqin1,2,3, WANG Bin1,2,3()   

  1. 1. School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029, China
    3. Beijing Engineering Research Center of Textile Nano Fiber, Beijing 100029, China
    4. CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2020-11-19 Revised:2021-08-14 Published:2022-03-15 Online:2022-03-29
  • Contact: WANG Bin

摘要:

针对纳米零价铁(nZVI)复合材料存在易团聚和难分离回收等缺陷,导致其降解效率下降、使用寿命变短等问题,首先介绍了nZVI的制备方法及负载型nZVI基材料在治理土壤污染和水体污染等领域的最新研究成果,分析了nZVI去除污染物的反应原理;重点总结归纳了聚丙烯酸/聚乙烯醇复合纳米纤维膜、壳聚糖复合纳米纤维膜、聚苯胺纳米纤维膜、碳纳米纤维膜等纳米纤维负载型nZVI基材料的制备方法及其去除污染物效果;最后提出以静电纺丝纳米纤维为代表的载体材料,可以有效抑制nZVI团聚,提高分离回收性能及拓宽其实际应用范围,是负载型nZVI基材料应用于环境修复的新型有效载体。

关键词: 纳米零价铁, 氧化还原法, 环境修复, 纳米纤维, 非金属矿物, 静电纺丝

Abstract:

Nano zero-valent-iron (nZVI) composites are associated with defects such as easy agglomeration and difficulty in separation and recovery, which lead to declined degradation efficiency and reduced service life. The preparation methods of nZVI and the latest research results of nZVI based materials in the field of soil and water pollution control were introduced. The reaction principle of nZVI to remove pollutants was discussed and analyzed. The preparation methods and pollutant removal effects of nanofiber supported nZVI based materials such as membranes made from polyacrylic acid/polyvinyl alcohol (PVA) composite nanofiber, chitosan composite nanofiber, polyaniline nanofiber and carbon nanofiber were summarized respectively. The progress review revealed that the carrier material in the form of electrospun nanofibers can effectively inhibit the agglomeration of nZVI, improve the separation and recovery performance and broaden the practical application scope. Nanofibers are shown as a new effective carrier to load nZVI based materials for environmental remediation.

Key words: nano zero-valent-iron, redox, environmental remediation, nanofiber, nonmetallic mineral, electrospinning

中图分类号: 

  • TQ340.9

图1

nZVI体系中发生的主要反应和污染物去除机制"

图2

液相还原法制备nZVI的反应过程及反应机制"

表1

不同方法制备nZVI的优缺点"

制备方法 优点 缺点
机械物理法 操作简单、快捷 制备成本高
液相还原法 合成路线简单、反应条件温、设备易实现 造成环境污染
绿色合成法 原料来源丰富、操作简单、环境友好 技术不成熟

图3

nZVI粒子生长和再固定化示意图"

图4

CA纳米纤维表面组装聚电解质多层膜后固定nZVI颗粒的示意图"

[1] REDDY A V B, YUSOP Z, JAAFAR J, et al. Recent progress on Fe-based nanoparticles synjournal, properties, characterization and environmental applications[J]. Journal of Environmental Chemical Engineering, 2016,4(3):3537-3553.
doi: 10.1016/j.jece.2016.07.035
[2] LEFEVRE E, BOSSA N, WIESNER M R, et al. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities[J]. Science of the Total Environment, 2016,565:889-901.
doi: 10.1016/j.scitotenv.2016.02.003
[3] LITTER M I, QUICI N, MEICHTRY M. Iron nanomaterials for water and soil treatment[M]. 2nd ed. Boca Raton: Jenny Stanford Publishing, 2018:257-259.
[4] CRANE R A, SCOTT T B. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology[J]. Journal of Hazardous Materials, 2012,211:112-125.
[5] MU Y, JIA F, AI Z, et al. Iron oxide shell mediated environmental remediation properties of nano zero-valent iron[J]. Environmental Science: Nano, 2017,4(1):27-45.
doi: 10.1039/C6EN00398B
[6] YIRSAW B D, MEGHARAJ M, CHEN Z, et al. Environmental application and ecological significance of nano-zero valent iron[J]. Journal of Environmental Sciences, 2016,44:88-98.
doi: 10.1016/j.jes.2015.07.016
[7] RAMAN C D, KANMANI S. Textile dye degradation using nano zero valent iron: a review[J]. Journal of Environmental Management, 2016,177:341-355.
doi: 10.1016/j.jenvman.2016.04.034
[8] STEFANIUK M, OLESZCZUK P, OK Y S. Review on nano zerovalent iron (nZVI) from synjournal to environmental applications[J]. Chemical Engineering Journal, 2016,287:618-632.
doi: 10.1016/j.cej.2015.11.046
[9] WANG C, BAER D R, AMONETTE J E, et al. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles[J]. Journal of the American Chemical Society, 2009,131(25):8824-8832.
doi: 10.1021/ja900353f
[10] WANG C B, ZHANG W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science & Technology, 1997,31(7):9602-9607.
[11] 王舒畅, 宋亚丹, 孙远奎. 碳基材料修饰零价铁去除污染物的效能与机理[J]. 化学进展, 2019,31(Z1):422-432.
WANG Shuchang, SONG Yadan, SUN Yuankui. Performance and mechanism of contaminants removal by carbon materialsmodified zerovalent iron[J]. Progress in Chemistry, 2019,31(Z1):422-432.
[12] HWANG Y H, KIM D G, SHIN H S. Mechanism study of nitrate reduction by nano zero valent iron[J]. Journal of Hazardous Materials, 2011,185(2/3):1513-1521.
doi: 10.1016/j.jhazmat.2010.10.078
[13] FU F, DIONYSIOU D D, LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment a review[J]. Journal of Hazardous Materials, 2014,267:194-205.
doi: 10.1016/j.jhazmat.2013.12.062
[14] 潘柯辛, 唐仁士, 蔡晓阳, 等. 零价纳米铁的制备与应用[J]. 绿色科技, 2019(8):159-161, 218.
PAN Kexin, TANG Renshi, CAI Xiaoyang, et al. Preparation and application of nanoscale zero-valent iron[J]. Journal of Green Science and Technology, 2019(8):159-161, 218.
[15] ZHAO X, LIU W, CAI Z, et al. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation[J]. Water Research, 2016,100:245-266.
doi: 10.1016/j.watres.2016.05.019
[16] 谢青青, 姚楠. 纳米零价铁的制备及应用研究进展[J]. 化工进展, 2017,36(6):2208-2214.
XIE Qingqing, YAO Nan. Progress of preparation and application of nanoscale zero-valent iron[J]. Progress in Chemistry, 2017,36(6):2208-2214.
[17] 张守秋, 岑洁, 吕德义, 等. 纳米零价铁去除水中重金属铅、铬离子的研究[J]. 高校化学工程学报, 2019,33(3):524-532.
ZHANG Shouqiu, CEN Jie, LÜ Deyi, et al. Removal of lead and chromium ions in water by nanoscale zero-valent iron[J]. Journal of Chemical Engineering of Chinese University, 2019,33(3):524-532.
[18] GUAN X, SUN Y, QIN H, et al. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014)[J]. Water Research, 2015,75:224-248.
doi: 10.1016/j.watres.2015.02.034
[19] 齐盛泽. 纳米零价铁及其在环境修复中的应用[J]. 中国高新科技, 2019 (1):110-112.
QI Shengze. Nano zero valent iron and its application in environmental remediation[J]. China High-Tech, 2019(1):110-112.
[20] 王世林, 滕玮. 多孔材料负载型纳米零价铁的制备及其在环境中的应用进展[J]. 山东化工, 2019,48(3):24-26.
WANG Shilin, TENG Wei. Advance in preparation and application of nZVI loaded on porous materials in environmental field[J]. Shandong Chemical Industry, 2019,48(3):24-26.
[21] 张茜茜, 夏雪芬, 周文, 等. 纳米零价铁的制备及其在环境中的应用进展[J]. 环境科学与技术, 2016,39(1):60-65.
ZHANG Xixi, XIA Xuefen, ZHOU Wen, et al. Advance in preparation and application of nanoscale zero-valent iron in environment field[J]. Environmental Science & Technology, 2016,39(1):60-65.
[22] MUKHERJEE R, KUMAR R, SINHA A, et al. A review on synjournal, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation[J]. Critical Reviews in Environmental Science and Technology, 2016,46(5):443-466.
doi: 10.1080/10643389.2015.1103832
[23] LI S, YAN W, ZHANG W. Solvent-free production of nanoscale zero-valent iron (nZVI) with precision mill-ing[J]. Green Chemistry, 2009,11(10):1618-1626.
doi: 10.1039/b913056j
[24] LIU A, ZHANG W. Fine structural features of nanoscale zero-valent iron characterized by spherical aberration corrected scanning transmission electron microscopy (Cs-STEM)[J]. Analyst, 2014,139(18):4512-4518.
doi: 10.1039/C4AN00679H
[25] BECKER M F, BROCK J R, CAI H, et al. Metal nanoparticles generated by laser ablation[J]. Nanostructured Materials, 1998,10(5):853-863.
doi: 10.1016/S0965-9773(98)00121-4
[26] RIBAS D, PEŠKOVÁ K, JUBANY I, et al. High reactive nano zero-valent iron produced via wet milling through abrasion by alumina[J]. Chemical Engineering Journal, 2019,366:235-245.
doi: 10.1016/j.cej.2019.02.090
[27] 任静怡. 浅谈绿色合成零价铁纳米粒子环境污染修复中的应用[J]. 中国设备工程, 2019 (1):158-160.
REN Jingyi. Application of green synjournal of zero valent iron nanoparticles in environmental pollution remedia-tion[J]. China Plant Engineering, 2019(1):158-160.
[28] 陈海军, 黄舒怡, 张志宾, 等. 功能性纳米零价铁的构筑及其对环境放射性核素铀的富集应用研究进展[J]. 化学学报, 2017,75(6):560-574.
doi: 10.6023/A17010039
CHEN Haijun, HUANG Shuyi, ZHANG Zhibin, et al. Synjournal of functional nanoscale zero-valent iron composites for the application of radioactive uranium enrichment from environment: a review[J]. Acta Chimica Sinica, 2017,75(6):560-574.
doi: 10.6023/A17010039
[29] JIA T, WANG Z, SHAN H, et al. Effect of nanoscale zero-valent iron on sludge anaerobic digestion[J]. Resources, Conservation and Recycling, 2017,127:190-195.
doi: 10.1016/j.resconrec.2017.09.007
[30] EBRAHIMINEZHAD A, ZARE-HOSEINABADI A, SARMAH A K, et al. Plant-mediated synjournal and applications of iron nanoparticles[J]. Molecular Biotechnology, 2018,60(2):154-168.
doi: 10.1007/s12033-017-0053-4
[31] 刘清, 邓真宁, 滑熠龙, 等. 纳米铁的绿色合成及其在环境中的应用研究进展[J]. 化工进展, 2020,39(5):1950-1963.
LIU Qing, DENG Zhenning, HUA Yilong, et al. Green synjournal of Fe nanoparticles and their environmental applications[J]. Progress in Chemistry, 2020,39(5):1950-1963.
[32] HUANG L, WENG X, CHEN Z, et al. Green synjournal of iron nanoparticles by various tea extracts: comparative study of the reactivity[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014,130:295-301.
doi: 10.1016/j.saa.2014.04.037
[33] 雍晓静, 关翀, 张昊, 等. 纳米零价铁的制备技术及其应用研究进展[J]. 环境工程, 2020,38(9):14-22.
YONG Xiaojing, GUAN Chong, ZHANG Hao, et al. Research progress in preparation technology and application of nano-zero-valent iron[J]. Environmental Engineering, 2020,38(9):14-22.
[34] 吴鸿伟, 冯启言, 杨虹, 等. 零价纳米铁的制备及对头孢类抗生素去除研究进展[J]. 化学研究与应用, 2018,30(5):657-665.
WU Hongwei, FENG Qiyan, YANG Hong, et al. Advance in fabrication of nano zero-valent iron for cephalosporin antibiotics removal[J]. Chemical Research and Application, 2018,30(5):657-665.
[35] SHI L, ZHANG X, CHEN Z. Removal of chro-mium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron[J]. Water Research, 2011,45(2):886-892.
doi: 10.1016/j.watres.2010.09.025
[36] 张建昆, 冯启言, 张林军, 等. 活性炭负载纳米零价铁去除对硝基酚的实验研究[J]. 应用化工, 2020,49(1):90-93.
ZHANG Jiankun, FENG Qiyan, ZHANG Linjun, et al. Study on removal of p-nitrophenol using nanoscale zero-valent iron supported on activated carbon[J]. Applied Chemical Industry, 2020,49(1):90-93.
[37] 徐文斐, 任文海, 张秀霞, 等. 生物炭负载零价铁复合材料对土壤中石油污染物的去除作用[J]. 石油学报(石油加工), 2020,36(5):1069-1077.
XU Wenfei, REN Wenhai, ZHANG Xiuxia, et al. Removal function of biochar supported zero-valent iron composite materials for petroleum pollutantsin soil[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020,36(5):1069-1077.
[38] TOMAŠEVI D D, KOZMA G, KERKEZ D V, et al. Toxic metal immobilization in contaminated sediment using bentonite-and kaolinite-supported nano zero-valent iron[J]. Journal of Nanoparticle Research, 2014,16(8):2548.
doi: 10.1007/s11051-014-2548-2
[39] BAO T, DAMTIE M M, HOSSEINZADEH A, et al. Bentonite-supported nano zero-valent iron composite as a green catalyst for bisphenol a degradation: preparation, performance, and mechanism of action[J]. Journal of Environmental Management, 2020,260:110105.
doi: 10.1016/j.jenvman.2020.110105
[40] 刘红, 程顺, 李春侠, 等. 凹凸棒土负载硫化纳米零价铁的制备及其去除水中As(Ⅲ)性能研究[J]. 武汉科技大学学报, 2020,43(1):30-36.
LIU Hong, CHENG Shun, LI Chunxia, et al. Preparation of attapulgite-loaded sulfide-modified nanoscale zero-valentiron and its adsorption of As(Ⅲ) from aqueous solution[J]. Journal of Wuhan University of Science and Technology, 2020,43(1):30-36.
[41] DONG L, LIN L, LI Q, et al. Enhanced nitrate-nitrogen removal by modified attapulgite-supported nanoscale zero-valent iron treating simulated ground-water[J]. Journal of Environmental Management, 2018,213:151-158.
doi: 10.1016/j.jenvman.2018.02.073
[42] DIAO Z H, XU X R, JIANG D, et al. Bentonite-supported nanoscale zero-valent iron/persulfate system for the simultaneous removal of Cr (VI) and phenol from aqueous solutions[J]. Chemical Engineering Journal, 2016,302:213-222.
doi: 10.1016/j.cej.2016.05.062
[43] 王璐瑶. 静电纺丝技术固载纳米零价铁研究进展[J]. 科技创新与应用, 2019(14):10-11.
WANG Luyao. Research progress of nano zero valent iron fixed by electrospinning[J]. Technology Innovation and Application, 2019(14):10-11.
[44] XIAO S, SHEN M, GUO R, et al. Immobilization of zerovalent iron nanoparticles into electrospun polymer nanofibers: synjournal, characterization, and potential environmental applications[J]. The Journal of Physical Chemistry C, 2009,113(42):18062-18068.
doi: 10.1021/jp905542g
[45] XIAO S, SHEN M, GUO R, et al. Fabrication of multiwalled carbon nanotube-reinforced electrospun polymer nanofibers containing zero-valent iron nanoparticles for environmental applications[J]. Journal of Materials Chemistry, 2010,20(27):5700-5708.
doi: 10.1039/c0jm00368a
[46] XIAO S, MA H, SHEN M, et al. Excellent copper (Ⅱ) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun polymer nanofibrous mats[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011,381(1-3):48-54.
doi: 10.1016/j.colsurfa.2011.03.005
[47] REN J, TIJING L D, SHON H K. “Robbing behavior” and re-immobilization of nanoscale zero-valent iron (nZVI) onto electrospun polymeric nanofiber mats for trichloroethylene (TCE) remediation[J]. Separation and Purification Technology, 2017,189:375-381.
doi: 10.1016/j.seppur.2017.08.011
[48] REN J, YAO M, WOO Y C, et al. Recyclable nanoscale zerovalent iron (nZVI)-immobilized electrospun nanofiber composites with improved mechanical strength for groundwater remediation[J]. Composites Part B: Engineering, 2019,171:339-346.
doi: 10.1016/j.compositesb.2019.04.038
[49] CHAUHAN D, DWIVEDI J, SANKARARAMAK-RISHNAN N. Novel chitosan/PVA/zero valent iron biopolymeric nanofibers with enhanced arsenic removal applications[J]. Environmental Science and Pollution Research, 2014,21(15):9430-9442.
doi: 10.1007/s11356-014-2864-1
[50] HORZUM N, DEMIR M M, NAIRAT M, et al. Chitosan fiber-supported zero-valent iron nanoparticles as a novel sorbent for sequestration of inorganic arsenic[J]. RSC Advances, 2013,3(21):7828-7837.
doi: 10.1039/c3ra23454a
[51] MUCHA N R. Electrospun carbon nanofibers with surface attached zero valent iron nanoparticles for heavy metal remediation in ground and waste water[D]. Greensboro: North Carolina Agricultural and Technical State University, 2016: 50-52.
[52] MUCHA N R, RAVELLA R, REDDY M R, et al. Electrospun carbon nanofiber supported zero valent iron nanoparticles (nZVI@ECNFs) for Cr(VI) remediation in ground and waste water[J]. MRS Advances, 2016,1(53):3593-3599.
doi: 10.1557/adv.2016.491
[53] REN J, WOO Y C, YAO M, et al. Nanoscale zero-valent iron (nZVI) immobilization onto graphene oxide (GO)-incorporated electrospun polyvinylidene fluoride (PVDF) nanofiber membrane for groundwater remediation via gravity-driven membrane filtration[J]. Science of the Total Environment, 2019,688:787-796.
doi: 10.1016/j.scitotenv.2019.05.393
[54] 武汉理工大学. 一种具有同轴结构含零价铁纳米粒子的复合纳米纤维膜的制备方法:201910105663.2[P]. 2019-06-14.
Wuhan University of Technology. A preparation method of composite nanofiber membrane with coaxial structure containing zero valent iron nanoparticles:201910105663.2[P]. 2019-06-14.
[55] 肖仕丽. 静电纺零价纳米铁/聚合物材料的制备、表征及其环境修复应用[D]. 上海:东华大学, 2010: 31-33.
XIAO Shili. Electrospun zero-valent iron nanoparticles/polymer materials: synthesis, characterization and environmental application[D]. Shanghai: Donghua University, 2010: 31-33.
[56] WANG X, WANG T, MA J, et al. Synjournal and characterization of a new hydrophilic boehmite-PVB/ PVDF blended membrane supported nano zero-valent iron for removal of Cr(VI)[J]. Separation and Purification Technology, 2018,205:74-83.
doi: 10.1016/j.seppur.2018.05.010
[57] BHAUMIK M, MCCRINDLE R I, MAITY A. Enhanced adsorptive degradation of congo red in aqueous solutions using polyaniline/Fe0 composite nanofibers[J]. Chemical Engineering Journal, 2015,260:716-729.
doi: 10.1016/j.cej.2014.09.014
[1] 张宇, 刘来俊, 李超婧, 晋巧巧, 谢千阳, 李佩伦, 王富军, 王璐. 外泌体功能化串晶结构纤维膜的制备及其成骨分化性能[J]. 纺织学报, 2022, 43(03): 24-30.
[2] 张爱琴, 郝佳程, 王芷, 王永超, 刘淑强, 董海亮, 贾虎生, 许并社. 键合型高分子荧光纤维的制备及其荧光增强机制[J]. 纺织学报, 2022, 43(03): 50-57.
[3] 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70.
[4] 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115.
[5] 金耀峰, 刘雷艮, 王薇, 陆鑫. 纳米纤维素室温诱导下的金红石型纳米二氧化钛制备及其紫外线屏蔽性能[J]. 纺织学报, 2022, 43(02): 176-182.
[6] 吴嘉茵, 王汉琛, 黄彪, 卢麒麟. 氯离子响应性纳米纤维素荧光水凝胶的构筑[J]. 纺织学报, 2022, 43(02): 44-52.
[7] 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73.
[8] 朱斐超, 张宇静, 张强, 叶翔宇, 张恒, 汪伦合, 黄瑞杰, 刘国金, 于斌. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(01): 49-57.
[9] 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42.
[10] 贾琳, 王西贤, 李环宇, 张海霞, 覃小红. 聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 34-41.
[11] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
[12] 周园园, 郑煜铭, 吴小琼, 邵再东. 静电纺纳米纤维光催化剂性能增强方法的研究进展[J]. 纺织学报, 2021, 42(11): 179-186.
[13] 刘强飞, 吴韶华, 杨吉震, 周蓉, 董湘琳, 宋传波, 沈照旭. 芳纶纳米纤维改性聚四氟乙烯/聚苯硫醚针刺毡的制备及其性能[J]. 纺织学报, 2021, 42(10): 47-52.
[14] 吴钦鑫, 侯成义, 李耀刚, 张青红, 秦宗益, 王宏志. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(09): 24-30.
[15] 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!