纺织学报 ›› 2022, Vol. 43 ›› Issue (03): 31-37.doi: 10.13475/j.fzxb.20211105307

• 特约专栏:生物医用纺织品 • 上一篇    下一篇

抗菌止血非织造弹性绷带的制备及其性能

成悦1, 胡颖捷2, 付译鋆1,3(), 李大伟1,3, 张伟1,3   

  1. 1.南通大学 纺织服装学院, 江苏 南通 226019
    2.东华大学 纺织学院, 上海 201620
    3.安全防护用特种纤维复合材料研发国家地方联合工程研究中心, 江苏 南通 226019
  • 收稿日期:2021-11-09 修回日期:2022-01-06 出版日期:2022-03-15 发布日期:2022-03-29
  • 通讯作者: 付译鋆
  • 作者简介:成悦(1997—),女,硕士生。主要研究方向为生物医用材料设计开发。
  • 基金资助:
    江苏省自然科学基金项目(BK20190927);国家级大学生创新创业训练计划项目(202010304028Z);南通市科技项目(MS12020074)

Preparation and properties of antibacterial hemostatic nonwoven elastic bandage

CHENG Yue1, HU Yingjie2, FU Yijun1,3(), LI Dawei1,3, ZHANG Wei1,3   

  1. 1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
    3. National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong, Jiangsu 226019, China
  • Received:2021-11-09 Revised:2022-01-06 Published:2022-03-15 Online:2022-03-29
  • Contact: FU Yijun

摘要:

为有效控制人体发生严重创伤时出血,减少伤口感染概率,研制了具有抗菌止血功能的弹性绷带。以聚丙烯(PP)纺粘弹性非织造材料为基材,对其进行聚乙烯醇(PVA)亲水改性和壳聚糖(CH)接枝改性处理,得到具有抗菌和止血双重功能的PP-PVA-CH弹性非织造材料,并对改性前后试样的性能进行了对比分析。结果表明:PVA和CH成功负载在非织造材料表面,且改性对材料主体结晶结构没有影响;PP-PVA-CH的最大拉伸断裂强力和断裂伸长率分别是PP的1.40和1.24倍,PP-PVA-CH的弹性回复率为88%;改性后试样的接触角有效降低,去离子水和人工合成血液的扩散面积分别是PP的13.0和12.9倍;PP-PVA-CH对大肠杆菌和金黄色葡萄球菌的抑菌率均大于99.0%。

关键词: 医疗卫生用纺织品, 弹性绷带, 抗菌, 液体吸附, 非织造, 壳聚糖

Abstract:

In emergencies, surgical operations and military conflicts, the human body may suffer from severe trauma resulting in massive bleeding. In order to effectively control bleeding and reduce the chance of wound infection, an elastic bandage with antibacterial hemostatic functions was developed. Polypropylene (PP) spunbonded elastic nonwovens were chosen as the base materials and treated with hydrophilic modification of polyvinyl alcohol (PVA) and grafting modification of chitosan (CH) to obtain PP-PVA-CH elastic nonwovens with both functions of antibacterial and hemostasis. The properties of the samples before and after modification were analyzed. The results show that PVA and CH were successfully loaded on the surface of nonwovens without affecting the main crystal structures. The maximum tensile breaking strength and elongation at break of PP-PVA-CH were 1.40 and 1.24 times higher than that of PP, and elastic recovery rate of PP-PVA-CH was 88%. Contact angle of the modified sample decreased effectively, and the diffusion areas of deionized water and synthetic blood were 13.0 and 12.9 times that of PP elastic nonwovens, respectively. Antibacterial rate of PP-PVA-CH elastic nonwovens against E.coli and S.aureus were found higher than 99.0%.

Key words: medical and hygiene textiles, elastic bandage, antibacterial, liquid adsorption, nonwoven, chitosan

中图分类号: 

  • TS101.4

图1

定伸长弹性测试示意图"

图2

不同试样的微观形貌"

图3

不同试样的红外光谱"

图4

不同试样的XRD图谱"

表1

不同试样的面密度及负载量"

试样 面密度 负载量
PP 47.2±1.3 0
PP-PVA 58.7±1.9 11.5±1.1
PP-PVA-CH 70.0±1.5 11.3±1.2

表2

不同试样的最大拉伸断裂强力和断裂伸长率"

试样 最大拉伸断裂强力/N 断裂伸长率/%
PP 18.21±1.57 54.36±2.98
PP-PVA 18.56±2.16 56.62±3.45
PP-PVA-CH 25.47±2.31 67.30±4.56

图5

不同试样的典型拉伸曲线"

表3

不同试样的定伸长弹性测试结果"

试样 L0/mm L1/mm L2/mm ρ/% ε/%
PP 100 150 103 94 3
PP-PVA 100 150 105 90 5
PP-PVA-CH 100 150 106 88 6

图6

不同试样的弹性测试实物照片"

图7

不同试样的液体扩散性"

表4

不同试样的抑菌率"

试样 抑菌率
大肠杆菌 金黄色葡萄球菌
PP 1.56±0.21 2.38±0.51
PP-PVA-CH 99.9±1.05 99.0±0.89

图8

不同试样的抗菌效果"

[1] 陈淑珍. 医用绷带中国专利分析[J]. 纺织科学研究, 2019(7):78-80.
CHEN Shuzhen. Analysis of Chinese patent for medical bandage[J]. Textile Science Research, 2019(7):78-80.
[2] 林建云, 罗时荷, 杨崇岭, 等. 生物基高分子型止血材料和伤口敷料[J]. 化学进展, 2021,33(4):581-595.
doi: 10.7536/PC200437
LIN Jianyun, LUO Shihe, YANG Chongling, et al. Bio-based polymeric hemostatic material and wound dressing[J]. Progress in Chemistry, 2021,33(4):581-595.
doi: 10.7536/PC200437
[3] 王璐, 关国平, 王富军, 等. 生物医用纺织材料及其器件研究进展[J]. 纺织学报, 2016,37(2):133-140.
WANG Lu, GUAN Guoping, WANG Fujun, et al. Research progress on biomedical textile materials and devices[J]. Journal of Textile Research, 2016,37(2):133-140.
[4] 安玉山, 王端, 刘洪玲. 医用绷带的发展[J]. 上海纺织科技, 2001(1):49-50.
AN Yushan, WANG Duan, LIU Hongling. Development of medical bandages[J]. Shanghai Textile Science & Technology, 2001(1):49-50.
[5] 金晓东. 基于双针床经编机生产一次成形医用绷带的工艺设计与开发[J]. 青岛大学学报(自然科学版), 2019,32(4):6-10.
JIN Xiaodong. Process design and development of producing one-time forming medical bandage based on double needle bed warp-knitting machine[J]. Journal of Qingdao University(Natural Science), 2019,32(4):6-10.
[6] 王玉晓, 李晶, 王丹, 等. 医用非织造产品的研究与应用进展[J]. 纺织导报, 2017(12):69-72.
WANG Yuxiao, LI Jing, WANG Dan, et al. Progress in the research and application of medical nonwovens[J]. China Textile Leader, 2017(12):69-72.
[7] 李刚健, 王林, 袁炜, 等. 医用聚丙烯材料发展现状[J]. 化工技术与开发, 2020,49(6):66-70.
LI Gangjian, WANG Lin, YUAN Wei, et al. Development status of medical polypropylene materials[J]. Technology & Development of Chemical Industry, 2020,49(6):66-70.
[8] 田光亮, 张文馨, 靳向煜, 等. 非织造材料用纤维的研究进展及发展趋势[J]. 产业用纺织品, 2019,37(9):1-6.
TIAN Guangliang, ZHANG Wenxin, JIN Xiangyu, et al. Research progress and development trend of fibers for nonwovens[J]. Technical Textiles, 2019,37(9):1-6.
[9] ELSABAHY Mahmoud, HAMAD Mostafa A. Design and preclinical evaluation of chitosan/kaolin nanocomposites with enhanced hemostatic efficiency[J]. Marine Drugs, 2021,19(2):50-65.
doi: 10.3390/md19020050
[10] 程冉, 徐瑞, 何前虹, 等. 水刺/机织绷带的复合工艺及性能研究[J]. 产业用纺织品, 2021,39(6):29-33.
CHENG Ran, XU Rui, HE Qianhong, et al. Study on the composite process and properties of spunlaced/woven bandages[J]. Technical Textiles, 2021,39(6):29-33.
[11] 陈健, 高璨, 高晓鸣. 美国纺织品抗菌性能检测标准最新进展[J]. 中国纤检, 2019(6):94-97.
CHEN Jian, GAO Can, GAO Xiaoming. Latest developments in testing standards for antibacterial properties of textiles in the United States[J]. China Fiber Inspection, 2019(6):94-97.
[12] HIROMI K S, MASAHIKO T, TEPPEI I, et al. Quick and easy sample preparation without resin embedding for the bone quality assessment of fresh calcified bone using fourier transform infrared imaging[J]. Plos One, 2018,13(2):e0189650.
doi: 10.1371/journal.pone.0189650
[13] 傅奇炜. 聚丙烯的晶体结构表征[J]. 生物化工, 2020,6(3):99-101.
FU Qiwei. Crystal structure characterization of polypropylene[J]. Biological Chemical Engineering, 2020,6(3):99-101.
[14] SREEJA S, SREEDHANYA S, SMIJESH N, et al. Organic dye impregnated poly(vinyl alcohol) nanocomposite as an efficient optical limiter: structure, morphology and photophysical properties[J]. Journal of Materials Chemistry C, 2013,1(24):3851-3861.
doi: 10.1039/c3tc30427b
[15] DU Yankai, PEI Meishan, HE Youjun, et al. Preparation, characterization and application of magnetic Fe3O4-CS for the adsorption of orange I from aqueous solutions[J]. Plos One, 2014,9(10):113-116.
[16] PEREZ J, NADRES E T, NGUYEN H N, et al. Response surface methodology as a powerful tool to optimize the synjournal of polymer-based graphene oxide nanocomposites for simultaneous removal of cationic and anionic heavy metal contaminants[J]. RSC Advances, 2017,7(30):18480-18490.
doi: 10.1039/C7RA00750G
[17] NISHINO T, MATSUMOTO T, NAKAMAE K. Surface structure of isotactic polypropylene by X-Ray diffraction[J]. Polymer Engineering & Science, 2000,40(2):336-343.
[18] 张燕, 徐庆南, 孔祥茹, 等. 常压N2+H2O气液DBD等离子体处理PP无纺布的超亲水性研究[J]. 真空科学与技术学报, 2019,39(9):767-774.
ZHANG Yan, XU Qingnan, KONG Xiangru, et al. Superhydrophilicity of PP nonwoven fabric modified with atmospheric gas-liquid DBD plasma[J]. Chinese Journal of Vacuum Science and Technology, 2019,39(9):767-774.
[19] LI J, ZHUANG S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: current state and perspectives[J]. European Polymer Journal, 2020,138(1):109984.
doi: 10.1016/j.eurpolymj.2020.109984
[20] MA Z, GARRIDO A, JEONG K C. Application, mode of action, and in vivo activity of chitosan and its micro and nanoparticles as antimicrobial agents: a review[J]. Carbohydrate Polymers, 2017,176:257-265.
doi: 10.1016/j.carbpol.2017.08.082
[21] 秦益民. 壳聚糖纤维的理化性能和生物活性研究进展[J]. 纺织学报, 2019,40(5):170-176.
QIN Yimin. Physicochemical properties and bioactivities of chitosan fibers[J]. Journal of Textile Research, 2019,40(5):170-176.
[1] 王晨玫孜, 王玲, 张庆乐, 王颖, 夏鑫. 复合水凝胶非织造布保鲜材料的制备及其性能[J]. 纺织学报, 2022, 43(03): 132-138.
[2] 禹凡, 郑涛, 汤涛, 金梦婷, 朱海霖, 于斌. 基于金属有机框架化合物的非织造复合材料制备及其对废水中六价铬的去除[J]. 纺织学报, 2022, 43(03): 139-145.
[3] 张涛, 王富平, 陈国宝, 吴基玉, 庞亚妮, 陈忠敏. 壳聚糖基抑菌凝胶剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 71-77.
[4] 吴洋, 刘方恬, 曹孟杰, 崔金海, 邓红兵. 生物质纤维医用敷料研究进展[J]. 纺织学报, 2022, 43(03): 8-16.
[5] 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60.
[6] 赵家明, 孙辉, 于斌, 杨潇东. CuO/聚丙烯/乙烯-辛烯共聚物复合熔喷非织造材料的制备及其吸油性能[J]. 纺织学报, 2022, 43(02): 89-97.
[7] 朵永超, 钱晓明, 郭寻, 高龙飞, 白赫, 赵宝宝. 中空桔瓣型高收缩聚酯/聚酰胺6超细纤维非织造布的制备及其性能[J]. 纺织学报, 2022, 43(02): 98-104.
[8] 丁倩, 邓炳耀, 李昊轩. 全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展[J]. 纺织学报, 2022, 43(01): 36-42.
[9] 孙婷, 张如全, 唐子杰, 涂虎, 胡敏. 全棉水刺非织造布的低碳节能冷堆处理工艺[J]. 纺织学报, 2022, 43(01): 89-95.
[10] 朱斐超, 张宇静, 张强, 叶翔宇, 张恒, 汪伦合, 黄瑞杰, 刘国金, 于斌. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(01): 49-57.
[11] 黄效华, 周家良, 池姗, 刘彦明, 伏广伟, 胡泽旭, 相恒学, 朱美芳. 聚酯/二氧化硅/橙活性成分改性纤维的制备及其性能[J]. 纺织学报, 2021, 42(12): 21-27.
[12] 王志辉, 徐羽菲, 郭豪玉, 张康磊, 庞星辰, 聂小林, 诸葛健, 魏取福. 光动力抗菌技术在纺织品上的应用研究进展[J]. 纺织学报, 2021, 42(11): 187-196.
[13] 刘淑萍, 李亮, 刘让同, 胡泽栋, 耿长军. 棉织物的3-氨丙基三乙氧基硅烷阻燃整理[J]. 纺织学报, 2021, 42(10): 107-114.
[14] 周慧玲, 朱俐莎, 吴雄英, 丁雪梅. 电雾化处理对羊毛织物抗起毛起球性能的影响[J]. 纺织学报, 2021, 42(10): 120-125.
[15] 翟丽莎, 王宗垒, 周敬伊, 高冲, 陈凤翔, 徐卫林. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(09): 170-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!