纺织学报 ›› 2022, Vol. 43 ›› Issue (03): 44-49.doi: 10.13475/j.fzxb.20210310006
徐晓彤1, 江振林1,2,3(), 郑钦超1, 朱科宇1, 王朝生3, 柯福佑3
XU Xiaotong1, JIANG Zhenlin1,2,3(), ZHENG Qinchao1, ZHU Keyu1, WANG Chaosheng3, KE Fuyou3
摘要:
针对聚对苯二甲酸乙二醇酯(PET)中的导热结构会影响纤维材料加工成形、纺织品加工过程以及纤维性能的问题,通过熔融共混法分别制备得到含有碳纳米管、石墨烯的PET复合材料,借助差示扫描量热仪对PET的非等温结晶动力学进行研究。结果表明:掺杂的碳纳米管、石墨烯在PET中起成核剂作用,其质量分数的增加对PET的结晶温度、结晶速率及结晶度具有促进作用;由Kissinger方程计算得到的纯PET和掺杂碳纳米管、石墨烯的PET复合材料的结晶活化能分别为-95.23、-160.27和-176.79 kJ/mol,结晶活化能的绝对值增加促进大分子分子链运动而使结晶过程放热加快;碳纳米管、石墨烯对PET的结晶速率、成核具有促进作用,其中石墨烯的二维片状导热结构对PET的结晶更有利。
中图分类号:
[1] | 叶静. PET/纳米矿物粒子纤维的结构与性能[J]. 纺织学报, 2009,30(1):22-25. |
YE Jing. Structure and properties of PET/nano-mineral particle fibers[J]. Journal of Textile Research, 2009,30(1):22-25. | |
[2] | 林启松, 江力, 汪凯, 等. 新型改性聚酯的制备及其性能[J]. 纺织学报, 2018,39(8):22-26. |
LIN Qisong, JIANG Li, WANG Kai, et al. Preparation and properties of new modified polyester[J]. Journal of Textile Research, 2018,39(8):22-26. | |
[3] | 徐阳, 王肖娜, 杜远之, 等. 静电和熔融纺丝法对PET纤维表面结构的影响[J]. 纺织学报, 2012,33(9):1-5. |
XU Yang, WANG Xiaona, DU Yuanzhi, et al. Effect of electrostatic and melt spinning methods on the surface structure of PET fibers[J]. Journal of Textile Research, 2012,33(9):1-5.
doi: 10.1177/004051756303300101 |
|
[4] | 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020,41(3):100-105. |
DING Fang, REN Xuehong. Flame retardant finishing of polyester fabric with phosphorus and nitrogen flame retardant[J]. Journal of Textile Research, 2020,41(3):100-105. | |
[5] | 王利娜, 石素宇, 辛长征, 等. 聚酯/棕榈基多孔碳纤维杂化膜的结晶和力学性能[J]. 纺织学报, 2017,38(8):6-10. |
WANG Lina, SHI Suyu, XIN Changzheng, et al. Crystallization and mechanical properties of polyester/palm-based porous carbon fiber hybrid films[J]. Journal of Textile Research, 2017,38(8):6-10. | |
[6] | 李绍龙, 徐艺, 陈农田, 等. 利用Avrami和莫志深方法研究聚丁二酸丁二醇酯-聚丁二酸二甘醇酯多嵌段共聚物的非等温结晶动力学[J]. 材料导报, 2018,32(16):2882-2888, 2896. |
LI Shaolong, XU Yi, CHEN Nongtian, et al. Non-isothermal crystallization kinetics of poly(butylene succinate)-b-poly(diethylene glycol succinate) mulitiblock copolymers by the Avrami and the Mo's methods exclusively[J]. Materials Review, 2018,32(16):2882-2888,2896. | |
[7] | 韩霞, 郭英. PET/PE共混纤维纺丝组件的结构与性能[J]. 纺织学报, 2014,35(7):123-127. |
HAN Xia, GUO Ying. Structure and properties of PET/PE blend fiber spinning assembly[J]. Journal of Textile Research, 2014,35(7):123-127. | |
[8] | 陈咏, 王颖, 何峰, 等. 共聚型磷系阻燃聚酯聚合反应动力学及其性能[J]. 纺织学报, 2019,40(10):13-19. |
CHEN Yong, WANG Ying, HE Feng, et al. Polymerization kinetics and properties of copolymerized phosphorous flame-retardant polyester[J]. Journal of Textile Research, 2019,40(10):13-19. | |
[9] | 王佳乐, 陈晓勇, 郜澳龙, 等. 低密度聚乙烯/石墨烯纳米复合材料非等温结晶动力学[J]. 工程塑料应用, 2021,49(1):102-106,113. |
WANG Jiale, CHEN Xiaoyong, GAO Aolong, et al. Non-isothermal crystallization kinetics of low density polyethylene/graphene nanocomposites[J]. Engineering Plastics Application, 2021,49(1):102-106,113. | |
[10] |
XU Q S, WANG C S, WANG B, et al. In situ polymerization and characterization of graphite nanoplatelet/poly(ethylene terephthalate)nanocomposites for construction of melt-spun fibers[J]. RSC Advances, 2017,7(53):33477-33485.
doi: 10.1039/C7RA04770C |
[11] | XIE F, LIANG H, REN X J, et al. Isothermal crystallization of PET/PTT/CNTs composites[J]. Adv Mater, 2013,4:750-752. |
[12] |
COBURN N, DOUGLAS P, KAYA D, et al. Isothermal and non-isothermal crystallization kinetics of composites of poly(propylene)and MWCNTs[J]. Advanced Industrial and Engineering Polymer Research, 2018,1(1):99-110.
doi: 10.1016/j.aiepr.2018.06.001 |
[13] |
TUGAY Y, MEHMET K, GURALP O. Non-isothermal crystallization kinetics of poly (butylene succinate)(PBS)nanocomposites with different modified carbon nano-tubes[J]. Polymer, 2018,146:361-377.
doi: 10.1016/j.polymer.2018.05.060 |
[14] |
LIU F Y, XU C L, ZENG J B, et al. Non-isothermal crystallization kinetics of biodegradable poly (butylene succinate-co-diethylene glycol succinate)copolymers[J]. Thermochimica Acta, 2013,568:38-45.
doi: 10.1016/j.tca.2013.06.025 |
[15] |
GAO C H, JIAN X R, ZHANG B, et al. Effect of magnesium hydroxide sulfate hydrate whisker on non-isothermal crystallization kinetics of poly (butylene succinate)[J]. Thermochimica Acta, 2018,663:9-18.
doi: 10.1016/j.tca.2018.02.016 |
[16] |
JURGEN E K, SCHAWE. Identification of three groups of polymers regarding their non-isothermal crystallization kinetics[J]. Polymer, 2019,167:167-175.
doi: 10.1016/j.polymer.2019.02.011 |
[17] |
AMBROSI M, RAUDINO I, DIANEZ I M. Non-isothermal crystallization kinetics and morphology of poly(3-hydroxybutyrate)/pluronic blends[J]. European Polymer Journal, 2019,120:109189.
doi: 10.1016/j.eurpolymj.2019.08.016 |
[18] | HOU Y B, QIU S L, HU Y, et al. Construction of bimetallic ZIF-derived Co-Ni LDHs on the surfaces of GO or CNTs with a recyclable method: toward reduced toxicity of gaseous thermal decomposition products of unsaturated polyester resin[J]. ACS Applied Materials & Interfaces, 2018,10(21):18359-18371. |
[19] | 姬洪, 宋明根, 薛勇, 等. 不同分子质量阻燃共聚酯的非等温结晶动力学[J]. 合成纤维, 2021,50(1):1-5. |
JI Hong, SONG Minggen, XUE Yong, et al. Non-isothermal crystallization kinetics of flame-retardant copolyesters with different molecular weight[J]. Synthetic Fiber in China, 2021,50(1):1-5. | |
[20] | 文健. 氧化石墨烯/尼龙6复合材料结晶动力学及增韧改性研究[D]. 广州:华南理工大学, 2019:1-30. |
WEN Jian. Crystallization kinetics and toughening modification of graphene oxide/nylon 6 composites[D]. Guangzhou: South China University of Technology, 2019:1-30. |
[1] | 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70. |
[2] | 王锐, 刘彦麟, 刘蕴钰, 顾伟文, 刘紫灵, 魏建斐. 以聚对苯二甲酸乙二醇酯为前驱体的碳点制备及其应用[J]. 纺织学报, 2022, 43(02): 10-18. |
[3] | 郭子娇, 李悦, 张瑞, 陆赞. 聚苯胺/Ti3C2Tx/碳纳米管复合纤维电极的制备及其性能[J]. 纺织学报, 2022, 43(02): 74-80. |
[4] | 邹梨花, 杨莉, 兰春桃, 阮芳涛, 徐珍珍. 层层组装氧化石墨烯/聚吡咯涂层棉织物的电磁屏蔽性能[J]. 纺织学报, 2021, 42(12): 111-118. |
[5] | 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33. |
[6] | 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131. |
[7] | 万振凯, 贾敏瑞, 包玮琛. 三维编织复合材料中碳纳米管纱线嵌入位置和数量的优化配置[J]. 纺织学报, 2021, 42(09): 76-82. |
[8] | 柯莹, 张海棠, 朱晓涵, 王宏付, 王敏. 电加热高空清洁作业服研制与性能评价[J]. 纺织学报, 2021, 42(08): 149-155. |
[9] | 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56. |
[10] | 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56. |
[11] | 梁家豪, 巫莹柱, 刘海东, 黄美林, 蔡瑞燕, 周俊俭, 谢权沛. 表层静电植入与贴伏石墨烯的湿敏聚氨酯纤维制备及其性能[J]. 纺织学报, 2021, 42(06): 63-70. |
[12] | 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(05): 168-177. |
[13] | 王璐, 韩雪, 娄琳, 何令华, 周小红. 电热防护手套研制及其在极端寒冷环境下的工效实验[J]. 纺织学报, 2021, 42(05): 150-154. |
[14] | 张润可, 吕汪洋, 陈文兴. 钴酞菁与碳纳米管共修饰碳纤维织物传感器的制备及其电化学性能[J]. 纺织学报, 2021, 42(04): 121-126. |
[15] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49. |
|