纺织学报 ›› 2022, Vol. 43 ›› Issue (03): 50-57.doi: 10.13475/j.fzxb.20210107408

• 纤维材料 • 上一篇    下一篇

键合型高分子荧光纤维的制备及其荧光增强机制

张爱琴1,2,3(), 郝佳程1,3, 王芷1,3, 王永超1,3, 刘淑强1, 董海亮3, 贾虎生3, 许并社3   

  1. 1.太原理工大学 轻纺工程学院, 山西 太原 030006
    2.山西浙大新材料与化工研究院, 山西 太原 030024
    3.太原理工大学 新材料界面科学与工程教育部重点实验室, 山西 太原 030024
  • 收稿日期:2021-01-29 修回日期:2021-11-26 出版日期:2022-03-15 发布日期:2022-03-29
  • 作者简介:张爱琴(1974—),女,副教授,博士。主要研究方向为有机发光纤维与有机抗菌纤维的开发及应用。E-mail: zaq6014567@126.com
  • 基金资助:
    国家自然科学基金项目(21972103);国家自然科学基金项目(61904120);山西省应用基础研究计划面上项目(201901D111111);山西省应用基础研究计划面上项目(201801D221124);山西浙大新材料与化工研究院研发项目(2021SX-AT010)

Preparation and fluorescence enhancement mechanism of bonded polymer fluorescence fibers

ZHANG Aiqin1,2,3(), HAO Jiacheng1,3, WANG Zhi1,3, WANG Yongchao1,3, LIU Shuqiang1, DONG Hailiang3, JIA Husheng3, XU Bingshe3   

  1. 1. College of Textile Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030006, China
    2. Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, Shanxi 030024, China
    3. Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
  • Received:2021-01-29 Revised:2021-11-26 Published:2022-03-15 Online:2022-03-29

摘要:

为进一步提高键合型高分子荧光粉的发光效率,采用先配合再聚合的技术路线,将稀土配合物Tb(4-BBA)3(4-VP)2与N-乙烯基咔唑(NVK)和甲基丙烯酸甲酯(MMA)共聚,制得键合型高分子荧光粉poly(MMA-co-Tb(4-BBA)3(4-VP)2-co-NVK),然后采用静电纺丝方法制备绿光荧光纤维,并对其结构和性能进行表征。结果表明:不同质量分数稀土配合物的荧光纤维在365 nm波长光激发下均表现出明亮绿光发射,纤维表面光滑且直径均匀,其发光强度及微观形貌随配合物质量分数的变化趋势一致,在纤维微观形貌与发光强度之间建立了关联;当稀土配合物质量分数为14%时,纤维发光强度最大,比相应荧光粉提高了1.6倍;用静电纺纤维膜制备的LED器件亮度达24 390 cd/m2,是传统涂膜法的2.6倍。

关键词: 铽, 荧光粉, 静电纺丝, 荧光纤维, 荧光增强机制

Abstract:

In order to further improve the luminescence efficiency of bonded terbium polymer phosphors, the bonded phosphors poly(MMA-co-Tb(4-BBA)3(4-VP)2-co-NVK) were prepared by copolymerization with the complex Tb(4-BBA)3(4-VP)2, N-vinylcarbazole (NVK) and methyl methacrylate (MMA) employing the technology of pre-coordination and post-polymerization, and the corresponding green fluorescence fibers were prepared by electrospinning. The structure and properties of the phosphors and fibers were characterized. The results exhibit that the fluorescence fibers with different content of the complex Tb(4-BBA)3(4-VP)2 show bright green emission excited by light with 365 nm wave length. The fibers have smooth surface and uniform diameter. The fluorescenct intensity and micro-morphology of the fluorescence fibers in the same trend as the complex content, which establishes the internal relationship between the micro-morphology and fluorescent intensity of fibers. The fluorescent intensity of the fibers is 1.6 times higher than that of the corresponding phosphors, reaching the maximum at 14% of the complex Tb(4-BBA)3(4-VP)2 content. The brightness of LED devices fabricated with nanofiber membrane reaches 24 390 cd/m2, which is 2.6 times that of LEDs made using the conventional coating methods.

Key words: terbium, phoshor, electrospinning, fluorescence fiber, fluorescence enhancement mechanism

中图分类号: 

  • TQ342.8

图1

键合型聚合物荧光粉PMNTb的合成路线"

图2

键合型高分子荧光粉和稀土配合物的红外光谱图"

图3

稀土配合物与键合型高分子荧光粉的紫外-可见吸收光谱图"

图4

纺丝液质量分数对F-PMN基质纤维微观形貌的影响"

图5

稀土配合物质量分数对键合型荧光纤维微观形貌的影响"

图6

键合型荧光纤维直径与稀土配合物质量分数的关系"

图7

键合型高分子荧光粉及其荧光纤维的TG-DTG曲线"

图8

不同稀土配合物质量分数键合型高分子荧光纤维的荧光发射谱及其发光强度随配合物质量分数的变化"

图9

键合型高分子荧光粉及其荧光纤维的荧光发射谱"

图10

键合型高分子荧光纤维的荧光增强机制"

图11

键合型高分子荧光粉及其荧光纤维的荧光衰减曲线"

图12

FM-LED、ETFM-LED、EQFM-LED的电致发光光谱及其CIE色坐标图和亮度-电压曲线"

[1] PENG Chong, LI Guogang, GENG Dongling, et al. Fabrication and luminescence properties of one-dimensional ZnAl2O4 and ZnAl2O4:A3+(A=Cr, Eu, Tb) microfibers by electrospinning method[J]. Materials Research Bulletin, 2012,47(11):3592-3599.
doi: 10.1016/j.materresbull.2012.06.056
[2] ZHAO Xiaoyan, XU Xiao, LIU Yuan, et al. Luminescence performance of poly(aryl ether)s membranes with different morphologies[J]. Polymer Engineering & Science, 2018,58(11):1945-1954.
[3] CAMPOU-QUILES M, ISHII Y, SAKAI H, et al. Highly polarized luminescence from aligned conjugated polymer electrospun nanofibers[J]. Applied Physics Letters, 2008,92(21):192-195.
[4] LIU Dan, WANG Zhongang. Novel polyaryletherketones bearing pendant carboxyl groups and their rare earth complexes: part I: synjournal and characterization[J]. Polymer, 2008,49(23):4960-4967.
doi: 10.1016/j.polymer.2008.09.015
[5] LEE Changik, LIM Jinsoo, KIM Songho, et al. Synjournal and luminescent properties of a novel Eu-containing nanoparticle[J]. Polymer, 2006,47(15):5253-5258.
doi: 10.1016/j.polymer.2006.05.054
[6] WANG Dongmei, ZHANG Junhu, LIN Quan, et al. Lanthanide complex/polymer composite optical resin with intense narrow band emission, high transparency and good mechanical performance[J]. J Mater Chem, 2003,13(9):2279-2284.
doi: 10.1039/b305024f
[7] KUMAR B, KAUR G, RAI S B. Sensitized green emission of terbium with dibenzoylmethane and 1, 10 phenanthroline in polyvinyl alcohol and polyvinyl pyrrolidone blends[J]. Spectrochim Acta A, 2017,187(1):75-81.
doi: 10.1016/j.saa.2017.06.025
[8] FENG Yu, LI Huanrong, GAN Quanying, et al. A transparent and luminescent ionogel based on organosilica and ionic liquid coordinating to Eu3+ ions[J]. J Mater Chem, 2010,20(5):972-975.
[9] LI Zhiqiang, WANG Guannan, WANG Yige, et al. Reversible phase transition of robust luminescent hybrid hydrogels[J]. Angewandte Chemie International Edition, 2018,57(8):2194-2198.
doi: 10.1002/anie.v57.8
[10] ABUALREJAL Murad M A, ZOU Haifeng, CHEN Jie, et al. A facile synjournal and photoluminescence properties of SiO2:Tb3+ spherical nanoparticles[J]. Advances in Nanoparticles, 2017,6(2):33-47.
doi: 10.4236/anp.2017.62004
[11] LIU Yue, LI Dan, MA Qianli, et al. Fabrication of novel Ba4Y3F17:Er3+ nanofibers with upconversion fluorescence via combination of electrospinning with fluorination[J]. Mater Sci: Mater Electron, 2016,27(11):11666-11673.
doi: 10.1007/s10854-016-5302-y
[12] 张爱琴, 王永超, 王芷, 等. 键合型铽聚合物PMNTb荧光纤维的微观形貌调控及防伪应用[J]. 太原理工大学学报, 2021,52(4):564-570.
ZHANG Aiqin, WANG Yongchao, WANG Zhi, et al. Microstructure control and anti-counterfeiting application of bonded terbium polymer PMNTb fluorescent fibers[J]. Journal of Taiyuan University of Technology, 2021,52(4):564-570.
[13] WANG Shiwei, XIE Guangbo, ZHANG Jingjing, et al. Structure, thermal and luminescence properties of Eu/Tb(BA)3 phen/PAN fibers fabricated by electrospinning[J]. Optical Materials, 2018,78:445-451.
doi: 10.1016/j.optmat.2018.02.020
[14] KARA Hulya, OYLUMLUOGLU G, COBAN Mustafa Burak. Photoluminescence properties of a new Sm(Ⅲ) complex/PMMA electrospun composite fibers[J]. Journal of Cluster Science, 2020,31(4) : 701-708.
doi: 10.1007/s10876-019-01677-7
[15] LI Weizou, TAO Ye, AN Guanghui, et al. One-dimensional luminescent composite nanofibers of Eu(TFI)3 TPPO/PVP prepared by electrospinning[J]. Dyes and Pigments, 2017,146:47-53.
doi: 10.1016/j.dyepig.2017.06.056
[16] 张爱琴, 王芷, 胥伟, 等. Eu(TTA)2(phen)MAA/PVA纳米复合纤维的制备及发光性能[J]. 太原理工大学学报, 2019,50(6):798-805.
ZHANG Aiqin, WANG Zhi, XU Wei, et al. Preparation and luminescence properties of Eu(TTA)2(phen) MAA/PVA nanocomposite fibers[J]. Journal of Taiyuan University of Technology, 2019,50(6):798-805.
[17] LI Dongxin, JIA Jing, WANG Bin, et al. Synjournal and luminescence properties of a novel Eu3+-containing polysiloxane copolymer[J]. Chemistry Select, 2018,3(21):5749-5755.
[18] SONG Qiusheng, ZHANG Kai, MA Haihong, et al. Preparation and characterization of fluorescent nanofibers derived from covalent linked PU/Eu(Cit) Phen[J]. Chinese Journal of Luminescence, 2011,32(5):499-504.
doi: 10.3788/fgxb
[19] GUO Junfang, GUO Bingxin, WU Jiangyu, et al. A three-dimensional supramolecular framework of silver(I), 2-phenyl-quinoline-4-carboxyl-ate and 4,4'-bipyridine[J]. Acta Crystallogr, Sect C: Cryst Struct Commun, 2013,69(7):742-744.
doi: 10.1107/S010827011301559X
[20] 赵宇轩, 陈艳君, 潘顾鑫, 等. 静电纺丝制备Tb-PEG+Eu-PEG/PANI/PAN荧光导电相变三功能复合纤维[J]. 高等学校化学学报, 2019,40(4):824-831.
ZHAO Yuxuan, CHEN Yanjun, PAN Guxin, et al. Preparation and performance of novel Tb-PEG+Eu-PEG/PANI/PAN luminescent-electrical-phase change composite fibers by electrospinning[J]. Chemical Journal of Chinese Universities, 2019,40(4):824-831.
[21] ZONG Xinhua, KIM Kwangsok, FANG Dufei, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes[J]. Polymer, 2002,43(16):4403-4412.
doi: 10.1016/S0032-3861(02)00275-6
[22] HARTMAN Ruppert Petrus Adrianus, BRUNNER Daniel, CAMELOT Damien Michel Andre, et al. Jet break-up in electrohydrodynamic atomization in the cone-jet mode[J]. Journal of Aerosol Science, 2000,31(1):65-95.
doi: 10.1016/S0021-8502(99)00034-8
[23] WANG Bin, ZHANG Aiqin, JIA Jing, et al. A novel red emitting polymeric complex as a directly film-forming phosphor applied in NUV-based LEDs[J]. Optical Materials, 2017,73:772-780.
doi: 10.1016/j.optmat.2017.09.045
[24] SINGH Bheeshma Pratap, SINGH Maheshwary, RAMAKRISHNA Venkata, et al. Improved photo-luminescence behaviour of Eu3+ activated CaMoO4 nanoparticles via Zn2+ incorporation[J]. RSC Advances, 2015,5(69):55977-55985.
doi: 10.1039/C5RA06692A
[25] XIA Younan, YANG Peidong, SUN Yugang, et al. One-dimensional nanostructures: synjournal, characterization, and applications[J]. Advanced Materials, 2010,15(5):353-389.
doi: 10.1002/adma.200390087
[1] 金旭, 刘方, 杜嬛, 华超, 公旭中, 张秀芹, 汪滨. 纳米纤维负载型纳米零价铁基材料在环境修复中的应用研究进展[J]. 纺织学报, 2022, 43(03): 201-209.
[2] 张宇, 刘来俊, 李超婧, 晋巧巧, 谢千阳, 李佩伦, 王富军, 王璐. 外泌体功能化串晶结构纤维膜的制备及其成骨分化性能[J]. 纺织学报, 2022, 43(03): 24-30.
[3] 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70.
[4] 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115.
[5] 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73.
[6] 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42.
[7] 贾琳, 王西贤, 李环宇, 张海霞, 覃小红. 聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 34-41.
[8] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
[9] 周园园, 郑煜铭, 吴小琼, 邵再东. 静电纺纳米纤维光催化剂性能增强方法的研究进展[J]. 纺织学报, 2021, 42(11): 179-186.
[10] 吴钦鑫, 侯成义, 李耀刚, 张青红, 秦宗益, 王宏志. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(09): 24-30.
[11] 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45.
[12] 曹元鸣, 郑蜜, 李一飞, 翟旺宜, 李丽艳, 常朱宁子, 郑敏. 二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能[J]. 纺织学报, 2021, 42(09): 46-51.
[13] 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56.
[14] 叶成伟, 汪屹, 徐岚. 钴基分级多孔复合碳材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(08): 57-63.
[15] 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!