纺织学报 ›› 2022, Vol. 43 ›› Issue (03): 64-70.doi: 10.13475/j.fzxb.20210205807

• 纤维材料 • 上一篇    下一篇

杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能

陶旭晨(), 李林, 徐珍珍   

  1. 安徽工程大学 纺织服装学院, 安徽 芜湖 241000
  • 收稿日期:2021-02-23 修回日期:2021-10-07 出版日期:2022-03-15 发布日期:2022-03-29
  • 作者简介:陶旭晨(1982—),男,教授,硕士。主要研究方向为功能性纳米纤维。E-mail: taoxuchen@ahpu.edu.cn
  • 基金资助:
    安徽省自然科学基金项目(1808085ME145);安徽省高校优秀青年人才支持计划项目(gxyq2018022)

Preparation and selective adsorption of calixarene/reduced graphene oxide fibers

TAO Xuchen(), LI Lin, XU Zhenzhen   

  1. College of Textiles and Clothing, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Received:2021-02-23 Revised:2021-10-07 Published:2022-03-15 Online:2022-03-29

摘要:

为提升杯芳烃纤维对Pt(Ⅱ)的平衡吸附量,依次通过酰胺化、还原法和静电纺丝法制备了杯芳烃/还原氧化石墨烯(CrGO)纤维。借助扫描电子显微镜、红外光谱仪、拉曼光谱仪和热重分析仪分析了纤维的结构与性能,并采用吸附实验研究了纤维的吸附选择性、吸附动力学及吸附等温模型。结果表明:CrGO纤维直径为(2±0.5)μm,具有褶皱的形貌,低水平的微观结构缺陷和良好的热稳定性;在Na(Ⅰ)、Hg(Ⅱ)共存时,CrGO纤维呈现出对Pt(Ⅱ)的选择性吸附能力,且符合假二级吸附动力学模型、Langmuir吸附等温模型;CrGO纤维的吸附行为主要归因于单分子层、化学型、吸热型、优惠型吸附;293 K温度下CrGO纤维在240 min时达到吸附平衡,平衡吸附量为113 mg/g,较杯芳烃聚酰亚胺纤维提升了303%。

关键词: 杯芳烃, 还原氧化石墨烯, 石墨烯纤维, 选择性吸附, 吸附动力学, 静电纺丝

Abstract:

In order to enhance the equilibrium adsorption capacity of calixarene fibers for Pt (Ⅱ), calixarene/reduced graphene oxide (CrGO) fibers were prepared through amidation, reduction and electrospinning. CrGO fibers were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, Raman spectrograph and thermogravimetric analyzer. The adsorption selectivity, adsorption kinetics and adsorption isotherm model of CrGO fibers were investigated. The results indicate that CrGO fibers with diameter of (2±0.5) μm possess some wrinkled morphology, low level of microstructure defects and a high thermal stability. In the presence of Na(I) and Hg (Ⅱ), CrGO fibers exhibit selective adsorption for Pt (Ⅱ), which fits with the pseudo second order adsorption kinetic model and Langmuir adsorption isothermal model. The adsorption behavior of CrGO fibers is mainly attributed to monolayer, chemical, endothermic and preferential adsorption. The equilibrium adsorption capacity of CrGO fibers reaches 113 mg/g at the temperature of 293 K for 240 min, which demonstrates an enhancement by 303% compared with calixarene polyimide fibers.

Key words: calixarene, reduced graphene oxide, graphene fiber, selective adsorption, adsorption kinetics, electrospinning

中图分类号: 

  • TQ342.86

图1

CrGO纤维制备方法"

图2

不同放大倍数下CrGO纤维的SEM照片"

图3

GO、硫醚杯芳烃、CrGO纤维的红外光谱图"

图4

GO、硫醚杯芳烃、CrGO纤维的拉曼光谱图"

图5

GO和CrGO纤维的热重曲线"

表1

GO及CrGO纤维对不同金属离子的平衡吸附量"

纤维名称 金属离子平衡吸附量平均值/ (mg·g-1)
Na(Ⅰ) Pt(Ⅱ) Hg(Ⅱ)
GO纤维 115.58 20.33 18.34
CrGO纤维 10.21 108.65 40.42

图6

推测的配位模型"

图7

CrGO纤维对Pt(Ⅱ)的吸附动力学曲线"

表2

吸附等温模型相关参数"

温度/
K
Langmuir模型 Freundlich模型
qm/
(mg·g-1)
KL/
(L·mg-1)
相关系数
R2
n KF/
(mg·g-1)
相关系数
R2
283 97.08 0.173 9 0.988 7 3.26 20.91 0.908 4
293 120.48 0.137 2 0.997 6 3.37 25.08 0.838 3
303 129.87 0.130 1 0.976 1 2.84 23.39 0.821 1
[1] CHITPONG N, HUSSON S M. High capacity nanofiber based ion-exchange membranes for the selective recovery of heavy metals from impaired waters[J]. Separation and Purification Technology, 2017,179:94-103.
doi: 10.1016/j.seppur.2017.02.009
[2] XUE L, REN J, WANG S, et al. Preparation of nanofiber aerogels by electrospinning and studying of its adsorption properties for heavy metal and dyes[J]. Journal of Porous Materials, 2020,27(6):1589-1599.
doi: 10.1007/s10934-020-00937-6
[3] ZAYTSEV A V, BULMER R, KOZHEVNIKOV V N, et al. Exploring the subtle effect of aliphatic ring size on minor actinide extraction properties and metal ion speciation in bis-1,2,4-triazine ligands[J]. Chemistry:A European Journal, 2020,26(2):428-437.
doi: 10.1002/chem.v26.2
[4] XU P, WANG W, QIAN X M, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio[J]. Desalination, 2019,449:57-68.
doi: 10.1016/j.desal.2018.10.019
[5] ALI S A, KAZI I W, ULLAH N. New chelating ion exchange resin synthesized via the cyclopolymerization protocol and its uptake performance for metal ion removal[J]. Industrial and Engineering Chemistry Research, 2015,54(40):9689-9698.
doi: 10.1021/acs.iecr.5b02267
[6] LIN S, WEI W, WU X H, et al. Selective recovery of Pd(II) from extremely acidic solution using ion-imprinted chitosan fiber: adsorption performance and mechanisms[J]. Journal of Hazardous Materials, 2015,299(6):10-17.
doi: 10.1016/j.jhazmat.2015.05.050
[7] HORYAT G, FRKANEC L, CINDRO N, et al. A comprehensive study of the complexation of alkali metal cations by lower rim calix[4]arene amide derivatives[J]. Physical Chemistry Chemical Physics, 2017,19(35):24316-24329.
doi: 10.1039/C7CP03920D
[8] TAO X C, HE J X. Synjournal of calix[4]arene thia derivative and extraction effect of substituents on mercury (Ⅱ) and lead (Ⅱ)[J]. Journal of Donghua University (English Edition), 2017,34(1):49-52.
[9] 陶旭晨, 李林. 选择性吸附Pt(Ⅳ)的杯芳烃纤维制备及其吸附动力学[J]. 纺织学报, 2019,40(3):20-25.
TAO Xuchen, LI Lin. Preparation and adsorption kinetics of calixarene fibers with selective adsorption of Pt (IV)[J]. Journal of Textile Research, 2019,40(3):20-25.
[10] ZHANG P, WANG Y L, ZHANG D X, et al. Calixarene functionalized graphene oxide composites for adsorption of neodymium ions from the aqueous phase[J]. RSC Advances, 2016(6):30384-30394.
[11] FONG H, CHUN I, RENEKER D H. Beaded nanofibers formed during electrospinning[J]. Polymer, 1999,40(16):4585-4592.
doi: 10.1016/S0032-3861(99)00068-3
[12] SHEKH M I, PATEL D M, PATEL K P, et al. Electrospun nanofibers of poly(NPEMA-co-CMPMA): used as heavy metal ion remover and water sanitizer[J]. Fibers and Polymers, 2016,17(3):358-370.
doi: 10.1007/s12221-016-5861-9
[13] 余改丽, 张弘楠, 覃小红, 等. 石墨烯/PAN纳米复合膜的制备及其力学性能[J]. 东华大学学报(自然科学版), 2017,43(3):4-10.
YU Gaili, ZHANG Hongnan, QIN Xiaohong, et al. Preparation and mechanical property of graphene/PAN composite membrane[J]. Journal of Donghua Univer-sity(Natural Science), 2017,43(3):4-10.
[14] 赵明, 闫立群. 石墨烯/聚偏氟乙烯纳米纤维的制备[J]. 纺织学报, 2016,37(10):158-161.
ZHAO Min, YAN Liqun. Preparation of polyvinylidene fluoride composite nanofibers by electrospinning[J]. Journal of Textile Research, 2016,37(10):158-161.
[15] 庞月红, 李朝霞, 沈晓芳, 等. 静电纺丝技术制备聚苯乙烯石墨烯复合纳米纤维[J]. 化学通报, 2012,75(11):1040-1043.
PANG Yuehong, LI Zhaoxia, SHEN Xiaofang, et al. Preparation of polystyrene graphene composite nanofibers by electrospinning technique[J]. Chemistry Bulletin, 2012,75(11):1040-1043.
[16] 陶旭晨, 凤权. 静电纺杯芳烃纤维的制备及其对Pt(Ⅳ)选择性吸附性能[J]. 纺织学报, 2017,38(3):13-17.
TAO Xuchen, FENG Quan. Fabrication of calixarene electrospun fibers and selective adsorption on Pt (IV)[J]. Journal of Textile Research, 2017,38(3):13-17.
[17] 丁彬, 俞建勇. 静电纺丝与纳米纤维[M]. 北京: 中国纺织出版社, 2011:61-63.
DING Bin, YU Jianyong. Electrospinning and nanofibers[M]. Beijing: China Textile & Apparel Press, 2011:61-63.
[18] PAI C L, BOYCE M C, RUTLEDGE G C. Morphology of porous and wrinkled fibers of polystyrene electrospun from dimethylformamide[J]. Macromolecules, 2009,42(6):2102-2114.
doi: 10.1021/ma802529h
[19] 田银彩, 张浩鹏, 李博琛, 等. 静电纺聚丙烯腈/石墨烯碳纳米纤维的结构与性能[J]. 纺织学报, 2018,39(10):24-31.
TIAN Yincai, ZHANG Haopeng, LI Bochen, et al. Structure and properties of electrospun polyacrylonitrile /graphene carbon nanofibers[J]. Journal of Textile Research, 2018,39(10):24-31.
doi: 10.1177/004051756903900104
[20] 关勇, 孔繁荣. 电荷半径比在无机化学中的某些应用[J]. 北京农学院学报, 1994,9(2):120-124.
GUAN Yong, KONG Fanrong. Some applications of charge radius ratio in inorganic chemistry[J]. Journal of Beijing Agricultural College, 1994,9(2):120-124.
[21] 宋天佑. 简明无机化学[M]. 北京: 高等教育出版社, 2007: 563-564.
SONG Tianyou. Concise inorganic chemistry[M]. Beijing: Higer Education Press, 2007: 563-564.
[22] GE Y, XIAO D, LI Z, et al. Dithiocarbamate functionalized lignin for efficient removal of metallic ions and the usage of the metal-loaded bio-sorbents as potential free radical scavengers[J]. Journal of Materials Chemistry A, 2014,2(7):2136-2145.
doi: 10.1039/C3TA14333C
[23] DINDA D, SAHA S K. Sulfuric acid doped poly diaminopyridine/graphene composite to remove high concentration of toxic Cr(VI)[J]. Journal of Hazardous Materials, 2015,291:93-101.
doi: 10.1016/j.jhazmat.2015.02.065
[24] TSENG R L, WU F C. Inferring the favorable adsorption level and the concurrent multi-stage process with the freundlich constant[J]. Journal of Hazardous Materials, 2008,155(1/2):277-287.
doi: 10.1016/j.jhazmat.2007.11.061
[1] 金旭, 刘方, 杜嬛, 华超, 公旭中, 张秀芹, 汪滨. 纳米纤维负载型纳米零价铁基材料在环境修复中的应用研究进展[J]. 纺织学报, 2022, 43(03): 201-209.
[2] 张宇, 刘来俊, 李超婧, 晋巧巧, 谢千阳, 李佩伦, 王富军, 王璐. 外泌体功能化串晶结构纤维膜的制备及其成骨分化性能[J]. 纺织学报, 2022, 43(03): 24-30.
[3] 张爱琴, 郝佳程, 王芷, 王永超, 刘淑强, 董海亮, 贾虎生, 许并社. 键合型高分子荧光纤维的制备及其荧光增强机制[J]. 纺织学报, 2022, 43(03): 50-57.
[4] 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115.
[5] 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73.
[6] 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42.
[7] 贾琳, 王西贤, 李环宇, 张海霞, 覃小红. 聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 34-41.
[8] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
[9] 周园园, 郑煜铭, 吴小琼, 邵再东. 静电纺纳米纤维光催化剂性能增强方法的研究进展[J]. 纺织学报, 2021, 42(11): 179-186.
[10] 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131.
[11] 吴钦鑫, 侯成义, 李耀刚, 张青红, 秦宗益, 王宏志. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(09): 24-30.
[12] 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45.
[13] 曹元鸣, 郑蜜, 李一飞, 翟旺宜, 李丽艳, 常朱宁子, 郑敏. 二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能[J]. 纺织学报, 2021, 42(09): 46-51.
[14] 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56.
[15] 叶成伟, 汪屹, 徐岚. 钴基分级多孔复合碳材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(08): 57-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!