纺织学报 ›› 2022, Vol. 43 ›› Issue (03): 95-102.doi: 10.13475/j.fzxb.20210303508

• 纺织工程 • 上一篇    下一篇

碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制

谷元慧1, 周红涛1, 张典堂2, 刘景艳2(), 王曙东1   

  1. 1.盐城工业职业技术学院, 江苏 盐城 224005
    2.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2021-03-09 修回日期:2021-08-07 出版日期:2022-03-15 发布日期:2022-03-29
  • 通讯作者: 刘景艳
  • 作者简介:谷元慧(1993—),女,助教,硕士。主要研究方向为纺织结构复合材料。
  • 基金资助:
    江苏省自然科学基金面上项目(BK20201216);江苏高校青蓝工程项目(苏教师〔2018〕12号);江苏高校青蓝工程项目(苏教师〔2019〕3号);盐城工业职业技术学院校级课题资助项目(ygy2005)

Torsional mechanical properties and failure mechanism of braided carbon fiber reinforced composite tubes

GU Yuanhui1, ZHOU Hongtao1, ZHANG Diantang2, LIU Jingyan2(), WANG Shudong1   

  1. 1. Yancheng Polytechnic College, Yancheng, Jiangsu 224005, China
    2. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2021-03-09 Revised:2021-08-07 Published:2022-03-15 Online:2022-03-29
  • Contact: LIU Jingyan

摘要:

为研究编织层数对编织复合材料圆管的扭转力学性能和失效模式的影响,采用二维编织铺层(Over-Braiding)工艺及真空辅助树脂灌注成型工艺分别制备了2、3和4层的碳纤维/树脂编织复合材料圆管。通过搭建扭转试验-非接触全场应变测试平台,研究了3种编织层数的复合材料圆管的扭转力学响应。基于扫描电子显微镜与微计算机断层扫描技术等测试方法,分析了编织复合材料圆管的扭转失效机制。结果表明:编织复合材料圆管在扭转载荷下呈线弹性脆断特征,且形成了贯穿管壁的空间螺旋剪切带损伤区;编织层数的增加利于应力应变的稳定扩散,减少整体结构分层损伤,4层圆管的失效扭矩可达450.00 N·m,分别是3层圆管和2层圆管的1.39和2.20倍;失效模式主要有纤维断裂或劈裂、脱黏、基体开裂或碎裂等,宏观层面的失效模式种类差异不大,但在微观层面,编织层数越少,圆管的纤维失效特征更明显。

关键词: 碳纤维增强复合材料, 编织复合材料, 圆管, 扭转性能, 编织层数, 力学性能, 失效机制

Abstract:

In order to investigate the effect of layers on the torsional mechanical properties and failure modes of braided composite tubes, the over-braiding process and the vacuum-assisted resin infusion molding process were adopted in preparing 3 types of carbon fiber/resin braided composite tubes with 2, 3 and 4 layers. By setting up a non-contact full-field torsion strain test platform, the torsional mechanical responses of the braided composite tubes with different layers were studied. Using the scanning electron microscopy and microcomputer tomography technologies, the torsion failure mechanism of the braided composite tubes was analyzed. The results show that the braided composite tubes exhibit elastic and brittle fracture characteristics under torsional load, and spatial spiral shear band damage zones through the tube wall are formed. The increase in the number of braided layers promotes the stable spread of stress and strain, and reduces delamination damage of the overall structure. The failure torque of the composite tube with 4 braided layers reaches 450.00 N·m, which is 1.39 times and 2.20 times that of tubes with 3 and 2 braided layers, respectively. The failure modes mainly include fiber fracture or splitting, debonding, matrix cracking or chipping. There is little difference in the types of failure modes at the macro scale. But at the micro scale, the less the number of braided layers is associated to, the more obvious the fiber failure in the tubes.

Key words: carbon fiber reinforced composite, braided composite, tube, torsion property, braided layers, mechanical behavior, failure mechanism

中图分类号: 

  • TB332

图1

VARI复合工艺示意图"

表1

编织复合材料圆管结构参数"

编织层数 内径d/mm 壁厚t/mm 纤维体积分数Vf/%
2 24.77 1.18 47.98
3 24.86 1.84 46.65
4 24.64 2.04 46.33

图2

编织复合材料圆管扭转试样设计"

图3

不同编织层数试样的扭转力学性能"

图4

应变场云图"

图5

不同编织层数试样的宏观扭转损伤形貌"

图6

不同编织层数试样的内部损伤Micro-CT图片"

图7

不同编织层数试样的损伤区域SEM照片 注:图中A、B、C、D为针对典型损伤区域的随机SEM照片。"

[1] AHMADIAN H, YANG M, NAGARAJAN A, et al. Effects of shape and misalignment of fibers on the failure response of carbon fiber reinforced polymers[J]. Computational Mechanics, 2019,63(5):999-1017.
doi: 10.1007/s00466-018-1634-1
[2] FANG H D, LI Z, WANG X Y, et al. Effect of shear on nucleation of carbon fiber reinforced polymer composites: experiments and modeling[J]. Polymer Engineering & Science, 2020(9):2314-2323.
[3] PANG Y Y, WU G, SU Z L, et al. Experimental study on the carbon-fiber-reinforced polymer-steel interfaces based on carbon-fiber-reinforced polymer delamination failures and hybrid failures[J]. Advances in Structural Engineering, 2020,23(11):2247-2260.
doi: 10.1177/1369433220911167
[4] GUO S, JIAO X, LI L, et al. Peridynamics study on failure of composite materials: a review[J]. Materials Review, 2019,33(3):826-833.
[5] 谷元慧, 张典堂, 贾明皓, 等. 碳纤维增强编织复合材料圆管制备及其压缩性能[J]. 纺织学报, 2019,40(7):71-77.
GU Yuanhui, ZHANG Diantang, JIA Minghao, et al. Preparation and compressive properties of carbon fiber reinforced braided composite circular tubes[J]. Journal of Textile Research, 2019,40(7):71-77.
[6] 杨旭东, 安涛, 冯晓琳, 等. 泡沫铝填充碳纤维增强树脂复合材料薄壁管的压缩变形行为与吸能特性[J]. 复合材料学报, 2020,37(8):1850-1860.
YANG Xudong, AN Tao, FENG Xiaolin, et al. Compressive deformation behavior and energy absorption of Al foam-filled carbon fiber reinforced plastic thin-walled tube[J]. Acta Materiae Compositae Sinica, 2020,37(8):1850-1860.
[7] ZHOU H L, LI C, ZHANG L Q, et al. Micro-XCT analysis of damage mechanisms in 3D circular braided composite tubes under transverse impact[J]. Composites Science and Technology, 2018,55:91-99.
[8] 李善恩, 缪馥星, 周风华, 等. 玻璃钢纤维增强塑料薄壁管抗冲击性能的实验研究[J]. 复合材料学报, 2018,35(12):3324-3330.
LI Shan'en, MIAO Fuxing, ZHOU Fenghua, et al. Experimental study on impact performance of glass fiber reinforced plastic thin-walled tubes[J]. Acta Materiae Compositae Sinica, 2018,35(12):3324-3330.
[9] ZHU Y X, CHEN W, TU W B, et al. Three-dimensional finite element modeling of rotary-draw bending of copper-titanium composite tube[J]. International Journal of Advanced Manufacturing Technology, 2020,106(5/6):2377-2389.
doi: 10.1007/s00170-019-04781-0
[10] LEE C S, HWANG W, PARK H C, et al. Failure of carbon/epoxy composite tubes under combined axial and torsional loading 1: experimental results and prediction of biaxial strength by the use of neural networks[J]. Composites Science and Technology, 1999,59:1779-1788.
doi: 10.1016/S0266-3538(99)00038-X
[11] WANG X P, CAI D A, LI C, et al. Failure analysis of three-dimensional braided composite tubes under torsional load: experimental study[J]. Journal of Reinforced Plastics and Composites, 2017,36(12):878-888.
doi: 10.1177/0731684417694255
[12] MANSOUR G, TZIKAS K, TZETZIS D, et al. Experimental and numerical investigation on the torsional behaviour of filament winding-manufactured composite tubes[J]. Applied Mechanics and Materials, 2016,834:173-178.
doi: 10.4028/www.scientific.net/AMM.834
[13] POTLURI P, MANAN A, FRANCKE M, et al. Flexural and torsional behaviour of biaxial and triaxial braided composite structures[J]. Composite Structures, 2006,75:377-386.
doi: 10.1016/j.compstruct.2006.04.046
[14] 孙伟, 关志东, 黎增山, 等. 纤维增强复合材料薄壁圆管扭转失效分析[J]. 复合材料学报, 2016,33(10):2187-2196.
SUN Wei, GUAN Zhidong, LI Zengshan, et al. Failure analysis of fiber reinforced composite thin-walled circular tubes under torsion load[J]. Acta Materiae Compositae Sinica, 2016,33(10):2187-2196.
[15] GU Y H, ZHANG D T, ZHANG Z W, et al. Torsion damage mechanisms analysis of two-dimensional braided composite tubes with digital image correction and X-ray micro-computed tomography[J]. Composite Structures, 2021,256:1-11.
[16] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020,41(10):67-73.
FENG Duanpei, SHANG Yuanyuan, LI Jun. Multi-scale simulation of impact failure behavior for 4-and 5-directional 3-D braided composites[J]. Journal of Textile Research, 2020,41(10):67-73.
[17] LIU X D, ZHANG D T, SUN J, et al. Refine reconstruction and verification of meso-scale modeling of three-dimensional five-directional braided composites from X-ray computed tomography data[J]. Composite Structures, 2020,245:112347.
doi: 10.1016/j.compstruct.2020.112347
[18] 杨甜甜, 王岭, 邱海鹏, 等. 三维机织角联锁SiCf/SiC复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020,41(12):73-80.
YANG Tiantian, WANG Ling, QIU Haipeng, et al. Bending property and damage mechanism of three-dimensional woven angle interlock SiCf/SiC composites[J]. Journal of Textile Research, 2020,41(12):73-80.
[19] YU G Q, GAO X G, SONG Y D. Experimental investigation of the tension-torsion coupling behavior on needled unidirectional C/SiC composites[J]. Materials Science & Engineering A, 2017,696:190-197.
[20] HE B, MI Z X, WANG Y J, et al. Unit cell modeling on torsion damage behavior of a novel three-dimensional integrated multilayer fabric-reinforced composite tubular structure[J]. Textile Research Journal, 2019,89(19/20):4253-4264.
doi: 10.1177/0040517519832837
[1] 方镁淇, 王茜, 李彦, 李超婧, 黎昊, 王璐. 女性压力性尿失禁吊带的设计及其体外力学性能评价[J]. 纺织学报, 2022, 43(03): 38-43.
[2] 陈咏, 乌婧, 王朝生, 潘小虎, 李乃祥, 戴钧明, 王华平. 生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(02): 37-43.
[3] 闵小豹, 潘志娟. 生物质纤维/菠萝叶纤维多组分混纺纱线的品质与性能[J]. 纺织学报, 2022, 43(01): 74-79.
[4] 王松立, 王美林, 周湘, 刘遵峰. 人造蜘蛛丝与仿蜘蛛丝纤维的研究进展[J]. 纺织学报, 2021, 42(12): 174-179.
[5] 宋雪旸, 张岩, 徐成功, 王萍, 阮芳涛. 碳纤维/聚丙烯/聚乳酸增强复合材料的力学性能[J]. 纺织学报, 2021, 42(11): 84-88.
[6] 万振凯, 贾敏瑞, 包玮琛. 三维编织复合材料中碳纳米管纱线嵌入位置和数量的优化配置[J]. 纺织学报, 2021, 42(09): 76-82.
[7] 周濛濛, 蒋高明, 高哲, 郑培晓. 纬编衬经衬纬管状织物增强复合材料研究进展[J]. 纺织学报, 2021, 42(07): 184-191.
[8] 陆振乾, 杨雅茹, 荀勇. 纤维对水泥基复合材料性能影响研究进展[J]. 纺织学报, 2021, 42(04): 177-183.
[9] 左亚君, 蔡赟, 王蕾, 高卫东. 纯棉纱线合股数对织物性能的影响[J]. 纺织学报, 2021, 42(04): 74-79.
[10] 黄笛, 李芳, 李刚. 涤纶/蚕丝机织心脏瓣膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 74-79.
[11] 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112.
[12] 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180.
[13] 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66.
[14] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[15] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!