纺织学报 ›› 2022, Vol. 43 ›› Issue (04): 133-139.doi: 10.13475/j.fzxb.20210500907
QIAN Jing, ZHAO Mengmeng(), DANG Tianhua
摘要:
为研究服装开口方式和风扇风速对通风服衣下空气层的体积、厚度及分布的影响,采用三维扫描法得到人体和服装的几何模型,通过逆向工程软件Geomagic Control对模型进行处理,分析不同条件下空气层厚度和体积的差异,以及空气层的分布规律。结果表明:风扇风速对平均空气层厚度的影响比开口方式更明显;风扇风速对整体和局部空气层的厚度影响显著,风扇风速越大,一些部位的空气层厚度越厚,且分布得更加均匀;从胸部和腰部 2个部位空气层的二维比较结果可以看出,随风速和开口的改变,胸部的空气层厚度变化并不明显,而腰部发生了明显变化。
中图分类号:
[1] | 张昭华, 应思艺, 郭云昕, 等. 三维人体扫描技术在服装工效学中的应用[J]. 上海纺织科技, 2015, 43(8): 40-44. |
ZHANG Zhaohua, YING Siyi, GUO Yunxin, et al. The application of 3D scanning technology on garment ergonomics[J]. Shanghai Textile Science & Technology, 2015, 43(8): 40-44. | |
[2] | KANG Zhanxiao, SHOU Dahua, FAN Jintu. Numerical modeling of body heat dissipation through static and dynamic clothing air gaps[J]. International Journal of Heat and Mass Transfer, 2020, 157: 1-3. |
[3] | 姜茸凡, 王云仪. 服装衣下空气层热传递性能研究进展[J]. 丝绸, 2018, 55(7): 41-48. |
JIANG Rongfan, WANG Yunyi. Research progress of heat transfer performance of air layer entrapped in clothing[J]. Journal of Silk, 2018, 55(7): 41-48. | |
[4] |
MERT Emel, PSIKUTA Agnes, BUENO Marie-Ange, et al. The effect of body postures on the distribution of air gap thickness and contact area[J]. International Journal of Biometeorology, 2017, 61(2): 363-375.
doi: 10.1007/s00484-016-1217-9 pmid: 27522664 |
[5] |
UDAY Raja, TALUKDARA Prabal, DAS Apurba, et al. Numerical modeling of heat transfer and fluid motion in air gap between clothing and human body: effect of air gap orientation and body movement[J]. International Journal of Heat and Mass Transfer, 2017, 108: 271-291.
doi: 10.1016/j.ijheatmasstransfer.2016.12.016 |
[6] |
FRACKIEWICZ-KACZMAREK Joanna, PSIKUTA Agnes, BUENO Marie-Ange, et al. Air gap thickness and contact area in undershirts with various moisture contents: influence of garment fit, fabric structure and fiber composition[J]. Textile Research Journal, 2015, 85(20): 2196-2207.
doi: 10.1177/0040517514551458 |
[7] |
FRACKIEWICZ-KACZMAREK Joanna, PSIKUTA Agnes, BUENO Marie-Ange, et al. Effect of garment properties on air gap thickness and the contact area distribution[J]. Textile Research Journal, 2015, 85(18): 1907-1918.
doi: 10.1177/0040517514559582 |
[8] |
YU Miao, WANG Yunyi, WANG Yipei, et al. Correlation between clothing air gap space and fabric mechanical properties[J]. Journal of The Textile Institute, 2013, 104(1): 67-77.
doi: 10.1080/00405000.2012.693274 |
[9] |
PSIKUTA Agnes, FACKIEWICZ-KACZMAREK Joanna, FRYDRYCH Iwona, et al. Quantitative evaluation of air gap thickness and contact area between body and garment[J]. Textile Research Journal, 2012, 82(14): 1405-1413.
doi: 10.1177/0040517512436823 |
[10] |
SCHWARZ-MÜLLER Frank, MARSHALL Russell, SUMMERSKILL Steve. Development of a positioning aid to reduce postural variability and errors in 3D whole body scan measurements[J]. Applied Ergonomics, 2018, 68: 90-100.
doi: 10.1016/j.apergo.2017.11.001 |
[11] | MERT Emel, PSIKUTA Agnes, ARÉVALO M, et al. A validation methodology and application of 3D garment simulation software to determine the distribution of air layers in garments during walking[J]. Measurement: Journal of the International Measurement Confederation, 2018, 117: 153-164. |
[12] |
MAH Tannie, SONG Guowen. Investigation of the contribution of garment design to thermal protection: part 1: characterizing air gaps using three-dimensional body scanning for women's protective clothing[J]. Textile Research Journal, 2010, 80(13): 1317-1329.
doi: 10.1177/0040517509358795 |
[13] |
LEE Yejin, HONG Kyunghi, HONG Sung Ae. 3D quantification of microclimate volume in layered clothing for the prediction of clothing insulation[J]. Applied Ergonomics, 2007, 38(3): 349-355.
pmid: 16756938 |
[14] |
PSIKUTA Agnes, FRACKIEWICZ-KACZMAREK Joanna, MERT Emel, et al. Validation of a novel 3D scanning method for determination of the air gap in clothing[J]. Journal of the International Measurement Confederation, 2015, 67: 61-70.
doi: 10.1016/j.measurement.2015.02.024 |
[15] |
KIM Young, LEE Calvin, LI Peng, et al. Investigation of air gaps entrapped in protective clothing systems[J]. Fire and Materials, 2002, 26(3): 121-126.
doi: 10.1002/fam.790 |
[16] | DAANEN H, HATCHER K, HAVENITH G. Determination of clothing microclimate volume[J]. Elsevier Ergonomics Book Series, 2005, 3: 361-365. |
[17] |
PSIKUTA Agnes, MERT Emel, ANNAHEIM S, et al. Local air gap thickness and contact area models for realistic simulation of human thermo-physiological response[J]. International Journal of Biometeorology, 2018, 62: 1121-1134.
doi: 10.1007/s00484-018-1515-5 |
[18] | 博克时代科技. 博克人体三维数据采集系统的应用[EB/OL]. (2021-01-21) [2021-05-08]. http://www.bokecad.com/index.php?m=content&c=index&a=show&catid=259&id=3. |
Bok Era Technology. The application of Bok huaman 3D data acquisition system[EB/OL].(2021-01-21) [2021-05-08]. http://www.bokecad.com/index.php?m=content&c=index&a=show&catid=259&id=3. | |
[19] | 韩霞. 基于Imageware、Geomagic Studio的产品逆向设计[J]. 北京服装学院学报(自然科学版), 2010, 30(3): 31-35. |
HAN Xia. Reverse design of the products based on Imageware, Geomagic Studio[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2010, 30(3): 31-35. | |
[20] | 胡影峰. Geomagic Studio软件在逆向工程后处理中的应用[J]. 制造业自动化, 2009, 31(9): 135-137. |
HU Yingfeng. The application of Geomagic Studio software in reverse engineering post-processing[J]. Manufacturing Automation, 2009, 31(9): 135-137. | |
[21] | 王云仪, 张雪, 李小辉, 等. 基于Geomagic软件的燃烧假人衣下空气层特征提取[J]. 纺织学报, 2012, 33(11): 102-106. |
WANG Yunyi, ZHANG Xue, LI Xiaohui, et al. Geomagic-based characteristic extraction of air gap under clothing[J]. Journal of Textile Research, 2012, 33(11): 102-106. | |
[22] |
LU Yehu, SONG Guowen, LI Jun. A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning[J]. Applied Ergonomics, 2014, 45(6): 1439-1446.
doi: 10.1016/j.apergo.2014.04.007 pmid: 24793820 |
[23] |
ZHAO Mengmeng, GAO Chuansi, WANG Faming, et al. A study on local cooling of garments with ventilation fans and openings placed at different torso sites[J]. International Journal of Industrial Ergonomics, 2013, 43(3): 232-237.
doi: 10.1016/j.ergon.2013.01.001 |
[1] | 张昭华, 陈之瑞, 李璐瑶, 肖平, 彭浩然, 张钰涵. 人体局部皮肤的气流敏感性及其影响因素[J]. 纺织学报, 2021, 42(12): 125-130. |
[2] | 吴国珊, 刘何清, 吴世先, 游波, 宋小鹏. 不同环境下个体通风服的制冷量[J]. 纺织学报, 2021, 42(10): 139-145. |
[3] | 赵敬德, 丁义冉, 张春红. 室外高温环境下通风服装的传热模型与实验研究[J]. 纺织学报, 2021, 42(06): 153-159. |
[4] | 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(08): 88-94. |
[5] | 赵蒙蒙, 柯莹, 王发明, 李俊. 通风服热舒适性研究现状与展望[J]. 纺织学报, 2019, 40(03): 183-188. |
[6] | 王敏, 李俊. 燃烧假人衣下空气层的三维现场扫描测量与表征[J]. 纺织学报, 2019, 40(01): 114-119. |
[7] | 袁新林 徐艳华. 段染纱横编织物花纹预测[J]. 纺织学报, 2017, 38(10): 44-48. |
[8] | 赵蒙蒙 宋晓霞. 通风服装对人体热舒适的影响[J]. 纺织学报, 2017, 38(10): 94-97. |
[9] | 王云仪 张雪 李小辉 李俊. 基于Geomagic软件的燃烧假人衣下空气层特征提取[J]. 纺织学报, 2012, 33(11): 102-106. |
[10] | 金子敏;罗晓菊;阎玉秀;陶建伟. 男式无缝上衣压力的分布规律及其舒适压范围[J]. 纺织学报, 2010, 31(10): 104-109. |
|