纺织学报 ›› 2022, Vol. 43 ›› Issue (04): 167-173.doi: 10.13475/j.fzxb.20210404007

• 机械与器材 • 上一篇    下一篇

无传感参数自适应纱线卷绕张力控制方法

蒋林军1,2, 张华1,2()   

  1. 1.浙江理工大学 机械与自动控制学院, 浙江 杭州 310018
    2.浙江理工大学 浙江省现代纺织装备技术重点实验室, 浙江 杭州 310018
  • 收稿日期:2021-04-14 修回日期:2021-08-25 出版日期:2022-04-15 发布日期:2022-04-20
  • 通讯作者: 张华
  • 作者简介:蒋林军(1995—),男,硕士生。主要研究方向为纱线卷绕装置张力控制。
  • 基金资助:
    国家自然科学基金项目(51675488);国家自然科学基金项目(51307151)

Sensorless parameter adaptive tension control method of winding yarns

JIANG Linjun1,2, ZHANG Hua1,2()   

  1. 1. School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Key Laboratory of Modern Textile Machinery & Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2021-04-14 Revised:2021-08-25 Published:2022-04-15 Online:2022-04-20
  • Contact: ZHANG Hua

摘要:

为有效保持纱线卷绕系统中张力稳定,针对系统中存在的非线性和时变性参数,提出了一种基于张力观测器和参数自适应的无传感张力控制方法。首先,基于力矩平衡原理建立纱线卷绕系统数学模型,并设计了降阶张力观测器,将观测值作为系统输入前置反馈补偿值,避免了使用张力传感器带来的测量延迟;然后,采用Landau离散时间递推算法辨识卷绕系统的转动惯量,同时将辨识得到的转动惯量用于修改速度控制器的PI参数,提高了卷绕系统的动态性能;并以纱线卷绕系统为控制对象,对采用传统张力传感器和PI参数控制方法与本文提出的方法进行对比实验。结果表明,本文提出的无传感控制方法可明显减小转动惯量变化对张力的影响,具有良好的鲁棒性、动态响应性能和较高稳态精度。

关键词: 张力观测器, 自适应控制, 张力控制, 纱线卷绕系统, Landau离散时间递推算法

Abstract:

In order to keep the tension stable in yarn winding system, in view of the nonlinear and time-dependent parameters in the system, this paper proposed a sensorless tension control method based on tension monitoring and parameter self-adaptation. According to the principle of torque balance, a mathematical model of the yarn winding system was established, a reduced-order tension monitoring device was designed, and the data obtained were used as the system pre-feedback compensation value to avoid measurement delay caused by the tension sensor. The Landau discrete-time recursive algorithm was then used to identify the moment of inertia of the winding system, and the identified moment of inertia was used to modify the PI parameters of the speed controller, which was used to improve the dynamic performance of the winding system. Comparison between the general PI parameter control and proposed sensorless parameter adaptive control shows that the proposed control method significantly reduces the influence of the change in the moment of inertia on the tension, and has good robustness, dynamic response performance and high steady-state accuracy.

Key words: tension monitoring device, adaptive control, tension control, yarn winding system, Landau discrete-time recursive algorithm

中图分类号: 

  • TP273

图1

纱线卷绕系统示意图"

图2

卷绕和超喂系统结构简图"

图3

基于张力传感器的闭环张力控制系统"

表1

系统仿真参数"

参数 单位 仿真参考值
E MPa 17.927
η MPa·s 15.295
S mm2 0.023 1
R1 m 0.05
J1 kg·m2 0.027 2
B1 N·m·s/rad 0.000 4
Tc1 s 0.1
Tc2 s 0.1
R2 m 0.2
J2 kg·m2 0.003 3/0.005 2
B2 N·m·s/rad 0.000 4
l0 m 0.2

图4

不同输入信号跟随仿真曲线"

图5

基于朗道离散时间递推算法的转动惯量辨识仿真框图"

图6

不同卷径下收卷系统转动惯量辨识结果"

图7

纱线卷绕系统实验平台"

图8

实验测试波形"

[1] SHANKAM V, OXENHAM W, SEYAM A, et al. Wireless yarn tension measurement, and control in direct cabling process[J]. Journal of The Textile Institute, 2009, 100(5): 400-411.
doi: 10.1080/00405000701830318
[2] SHI T, LIU H, GENG Q, et al. An improved relative coupling control structure for multi-motor speed synchronous driving system[J]. Iet Electric Power Applications, 2016, 10(6): 451-457.
doi: 10.1049/iet-epa.2015.0515
[3] FENG P, LIU D, YANG C. High efficiency covering technology for covered yarn production: controlling the spandex yarn draw ratio[J]. Fibres & Textiles in Eastern Europe, 2020, 28(6): 24-28.
[4] 瞿成明, 王建平, 凌有铸, 等. 卷绕系统中一种张力智能观测器的设计[J]. 仪器仪表学报, 2012, 33(10): 2349-2355.
QU Chengming, WANG Jianping, LING Youzhu, et al. Design of an intelligent tension observer in winding systems[J]. Chinese Journal of Scientific Instrument, 2012, 33(10): 2349-2355.
[5] 陈久伟, 童朝南. 基于智能负荷观测器的无张力控制系统[J]. 电气传动, 2016, 46(11): 7-10.
CHEN Jiuwei, TONG Chaonan. Without tension control system based on intelligent load observer[J]. Electric Drive, 2016, 46(11): 7-10.
[6] KANG H, SHIN K H. Precise tension control of a dancer with a reduced-order observer for roll-to-roll manufacturing systems[J]. Mechanism and Machine Theory, 2018, 122: 75-85.
doi: 10.1016/j.mechmachtheory.2017.12.012
[7] HOU H, NIAN X, CHEN J, et al. Decentralized coordinated control of elastic web winding systems without tension sensor[J]. ISA Transactions, 2018, 80: 350-359.
doi: 10.1016/j.isatra.2018.06.006
[8] BETTENDORF R. Winder software testing with real-time dynamic simulation[J]. IEEE Transactions on Industrial Electronics, 2005, 52(2): 489-498.
doi: 10.1109/TIE.2005.844228
[9] 符燕辉, 陈刚, 柴明. 纱线恒张力喂送系统的设计[J]. 纺织机械, 2014(1): 11-14.
FU Yanhui, CHEN Gang, CHAI Ming. Design of yarn constant tension feeding system[J]. Textile Machinery, 2014(1): 11-14.
[10] 陈志翔, 高钦和. 自适应扩张状态观测器收敛性分析与应用[J]. 控制理论与应用, 2018, 35(11): 1697-1702.
CHEN Zhixiang, GAO Qinhe. Convergence analysis and application of adaptive extended state observer[J]. Control Theory & Applications, 2018, 35(11): 1697-1702.
[11] 李志斌, 赵金, 刘洋. 基于高精度朗道离散时间法的转动惯量辨识[J]. 电气传动, 2013, 43(11): 58-60.
LI Zhibin, ZHAO Jin, LIU Yang. Inertia identification based on high precision landau discrete time recursive algorithm[J]. Electric Drive, 2013, 43(11): 58-60.
[12] HARNEFORS L, SAARAKKALA S E, HINKKANEN M. Speed control of electrical drives using classical control methods[J]. IEEE Transactions on Industry Applications, 2013, 49(2): 889-898.
doi: 10.1109/TIA.2013.2244194
[13] YAN Y, JI B, SHI T, et al. Two-degree-of-freedom proportional integral speed control of electrical drives with Kalman-filter-based speed estimation[J]. Iet Electric Power Applications, 2015, 10(1): 18-24.
doi: 10.1049/iet-epa.2014.0516
[1] 罗海林, 傅雅琴, 刘柯. 直接成筒缫丝的自动缫丝机结构设计[J]. 纺织学报, 2020, 41(08): 115-120.
[2] 周虎, 刘涛, 高金杰, 周强, 罗滨鸿, 游政, 苏炳望, 巴拉. 手工地毯植绒机轨迹规划及其速度控制优化[J]. 纺织学报, 2019, 40(10): 177-182.
[3] 姜磊. 卷染机自动控制系统的改造设计[J]. 纺织学报, 2015, 36(03): 121-127.
[4] 王友钊 周香琴 黄静 陈汉伟. 织机卷布机构的力学分析及其张力控制系统[J]. 纺织学报, 2013, 34(11): 141-0.
[5] 宋亚男, 徐荣华, 王钦若. 剑杆织机经纱张力控制中滤波器设计与分析[J]. 纺织学报, 2012, 33(2): 115-120.
[6] 邢静忠 李家惠 陈利 杨涛. 刚性圆柱上环向缠绕张力的分析与设计[J]. 纺织学报, 2011, 32(8): 122-127.
[7] 李革;贾元武;张华;赵匀. 基于PLC的积分分离PID算法在张力控制中的应用[J]. 纺织学报, 2008, 29(8): 109-112.
[8] 李革;贾元武;张建新;赵匀. 基于模糊神经网络的PID张力控制系统[J]. 纺织学报, 2008, 29(6): 109-112.
[9] 沈丹峰;叶国铭. 可编程纬纱张力控制器的应用[J]. 纺织学报, 2008, 29(2): 90-93.
[10] 潘湘高;李晓峰. 纺织印染机械多电机群变频调速同步DCS[J]. 纺织学报, 2007, 28(4): 116-120.
[11] 葛锁良;孟巍;陈曼. 变频调速技术在腈纶纺丝生产线上的应用[J]. 纺织学报, 2007, 28(3): 104-106.
[12] 潘湘高;李晓峰. 基于网络和变频技术的印染机械同步系统[J]. 纺织学报, 2007, 28(1): 108-111.
[13] 李革;梅靖;赵匀;潘海鹏. 复贴机张力的模糊自整定PID控制[J]. 纺织学报, 2006, 27(6): 41-43.
[14] 张春芳. 新型自动络筒机的性能比较[J]. 纺织学报, 2004, 25(06): 98-99.
[15] 郭兴峰. 喷气织机纬纱的张力峰值与控制[J]. 纺织学报, 2004, 25(03): 32-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!