纺织学报 ›› 2022, Vol. 43 ›› Issue (04): 180-186.doi: 10.13475/j.fzxb.20201203407

• 综合述评 • 上一篇    下一篇

微纳米纤维素材料的微流控制备技术研究进展

李兴兴, 李琴, 岳甜甜, 刘宇清()   

  1. 苏州大学 纺织与服装工程学院, 江苏 苏州 215123
  • 收稿日期:2020-12-14 修回日期:2021-12-01 出版日期:2022-04-15 发布日期:2022-04-20
  • 通讯作者: 刘宇清
  • 作者简介:李兴兴(1998—),男,硕士生。主要研究方向为生物质智能纤维材料。

Progress in microfluidics preparation technology of micro/nano cellulose materials

LI Xingxing, LI Qin, YUE Tiantian, LIU Yuqing()   

  1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2020-12-14 Revised:2021-12-01 Published:2022-04-15 Online:2022-04-20
  • Contact: LIU Yuqing

摘要:

为深入分析微流控技术制备微纳米纤维素材料的研究现状,促进其在各领域应用,综述了以纤维素及纳米纤维素为原料,以微流控技术为基础,结合快速冷冻法、原位界面络合法等技术,制备纤维素及纳米纤维素微球和微胶囊、纤维长丝、薄膜、微管、水凝胶的最新研究进展;针对微流控技术制备微纳米纤维素材料存在的挑战,提出了克服材料缺陷,提升微通道构建能力,探索技术结合方案的应对策略;展望了微流控技术在制备微纳米纤维素材料方面的发展前景,为微流控技术制备微纳米纤维素材料在材料科学、组织工程和再生医学等领域的应用提供参考。

关键词: 微纳米纤维素材料, 纳米纤维素纤维, 微流控技术, 受控挤出, 层流效应, 纤维素微球, 纤维素微胶囊

Abstract:

In order to gain in-depth understanding of the research status of micro/nano cellulose materials prepared by microfluidic technology, and to promote its application in various fields, the use of cellulose and nanocellulose as raw materials based on microfluidic technology was reviewed. The latest research progress was reviewed and discussed concentrating on the preparations of cellulose microspheres and microcapsules, nanocellulose microspheres and microcapsules, fiber filaments, films, microtubules, and hydrogels combined with rapid freezing method, in-situ interface complex method and other technologies. Aiming at the challenges in the preparation of micro/nano cellulose materials by microfluidic technology, a corresponding strategy is proposed to tackle material defects, to enhance the ability for micro-channel construction, and to explore technology combination solutions. Development prospects were also scrutinized to provide references for the preparation of micro/nano cellulose materials by microfluidic technology in the fields of material science, tissue engineering and regenerative medicine.

Key words: micro/nano cellulose material, nano cellulose fiber, microfluidic technology, controlled extrusion, laminar effect, cellulose microsphere, cellulose microcapsule

中图分类号: 

  • TQ341

图1

醋酸纤维素微球制备示意图"

图2

微流控流聚焦装置示意图"

图3

界面络合示意图"

图4

杂化纤维制备示意图"

图5

微流控聚焦装置示意图"

图6

纤维素膜取向示意图"

图7

水凝胶片的示意图"

[1] MANZ A, HARRISON J, VERPOORTE J, et al. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems-capillary electrophoresis on a chip[J]. Journal of Chromatography A, 1992, 593(1/2): 253-258.
doi: 10.1016/0021-9673(92)80293-4
[2] DITTRICH P S, MANZ A. Lab-on-a-chip: microfluidics in drug discovery[J]. Nature Reviews Drug Discovery, 2006, 12(3): 210-218.
[3] CHANG L, HUANG H, CHOU Y, et al. Direct fabrication of nanofiber scaffolds in pillar-based microfluidic device by using electrospinning and picosecond laser pulses[J]. Microelectronic Engineering, 2017, 177(6): 52-58.
doi: 10.1016/j.mee.2017.01.036
[4] YU Y, SHANG L, GUO J, et al. Design of capillary microfluidics for spinning cell-laden microfibers[J]. Nature Protocols, 2018, 13(10): 2557-2579.
doi: 10.1038/s41596-018-0051-4
[5] SUH Y K, KANG S. A review on mixing in micro-fluidics[J]. Micromachines, 2010, 1(3):82-111.
doi: 10.3390/mi1030082
[6] 李冉冉, 胡静, 李兴兴, 等. 微流控TPU/Cs复合中空纤维的制备及研究[J]. 现代丝绸科学与技术, 2021, 36(4): 5-7.
LI Ranran, HU Jing, LI Xingxing, et al. Preparation and research of microfluidic TPU/Cs composite hollow fibers[J]. Modern Silk Science & Technology, 2021, 36(4): 5-7.
[7] YE C H, SIDNEY T, HU K, et al. Cellulose nanocrystal microcapsules as tunable cages for nano- and microparticles[J]. ACS Nano, 2015, 9(11): 10887-10895.
doi: 10.1021/acsnano.5b03905
[8] HOU Y Z, GUAN Q F, XIA J, et al. Strengthening and toughening hierarchical nanocellulose via humidity-mediated interface[J]. ACS Nano, 2021, 15(1): 1310-1320.
doi: 10.1021/acsnano.0c08574
[9] ZHU M W, WANG Y L. Anisotropic, transparent films with aligned cellulose nanofibers[J]. Advanced Materials, 2017, 29(6): 1606284-1606291.
doi: 10.1002/adma.201606284
[10] RAO L T, REWATKAR P, SATISH K D, et al. Performance optimization of microfluidic paper fuel-cell with varying cellulose fiber papers as absorbent pad[J]. International Journal of Energy Research, 2020, 44(4): 3893-3904.
doi: 10.1002/er.5188
[11] IMAI S. Thin-film diaphragms of cellulose nanofiber fabricated using high-concentration polar dispersion for application to MEMS actuators[J]. Sensors and Actuators A: Physical, 2019, 15(2): 134-143.
[12] YIN N, STILWELL M D, SANTOS T M A, et al. Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro[J]. Acta Biomaterialia, 2015, 12(1): 129-138.
doi: 10.1016/j.actbio.2014.10.019
[13] QI H, MA R, SHI C, et al. Novel low-cost carboxymethyl cellulose microspheres with excellent fertilizer absorbency and release behavior for saline-alkali soil[J]. International Journal of Biological Macromolecules, 2019, 15(6): 412-419.
[14] BAEK S, PARK Y. Highly-porous uniformly-sized amidoxime-functionalized cellulose beads prepared by microfluidics with N-methylmorpholine N-oxide[J]. Cellulose, 2021, 28(4): 5401-5419.
doi: 10.1007/s10570-021-03872-0
[15] ZHANG M, GUO W, REN M, et al. Fabrication of porous cellulose microspheres with controllable structures by microfluidic and flash freezing method[J]. Materials Letters, 2020, 262(3): 127193-127202.
doi: 10.1016/j.matlet.2019.127193
[16] CARRICK C, LARSSON P A, BRISMAR H, et al. Native and functionalized micrometre-sized cellulose capsules prepared by microfluidic flow focusing[J]. RSC Advances, 2014, 4(37): 19061-19067.
doi: 10.1039/C3RA47803C
[17] YU J, HUANG T R, LIM Z H, et al. Production of hollow bacterial cellulose microspheres using microfluidics to form an injectable porous scaffold for wound healing[J]. Advanced Healthcare Materials, 2016, 5(23): 2983-2992.
doi: 10.1002/adhm.201600898
[18] MARTINA P, BINELLI M R, STUDART A R, et al. Self-grown bacterial cellulose capsules made through emulsion templating[J]. ACS Biomaterials Science & Engineering, 2021, 7 (7): 3221-3228.
[19] LEVIN D, SAEM S, OSORIO D A, et al. Green templating of ultra-porous cross-linked cellulose nanocrystal microparticles[J]. Chemistry of Materials, 2018, 30(11): 8040-8051.
doi: 10.1021/acs.chemmater.8b03858
[20] KAUFMAN G, MUKHOPADHYAY S, ROKHLENKO Y, et al. Highly stiff yet elastic microcapsules incorporating cellulose nanofibrils[J]. Soft Matter, 2017, 13(6): 2733-2737.
doi: 10.1039/C7SM00092H
[21] CAI Y, GENG L, CHEN S, et al. Hierarchical assembly of nanocellulose into filaments by flow-assisted alignment and interfacial complexation: conquering the conflicts between strength and toughness[J]. ACS Applied Materials & Interfaces, 2020, 28(6): 32090-32098.
[22] GENG L H, CAI Y H, LU L, et al. highly strong and conductive carbon fibers originated from bioinspired lignin/nanocellulose precursors obtained by flow-assisted alignment and in situ interfacial complexation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(6): 2591-2599.
[23] GAO Q, WANG J, LIU J, et al. High mechanical performance based on the alignment of cellulose nanocrystal/chitosan composite filaments through continuous coaxial wet spinning[J]. Cellulose, 2021, 28(6): 7995-8008.
doi: 10.1007/s10570-021-04009-z
[24] LIU Y, WU P. Bioinspired hierarchical liquid-metacrystal fibers for chiral optics and advanced textiles[J]. Advanced Functional Materials, 2020, 30(5): 2002193.
doi: 10.1002/adfm.202002193
[25] LU L, FAN S, GENG L, et al. Low-loss light-guiding, strong silk generated by a bioinspired microfluidic chip[J]. Chemical Engineering Journal, 2020, 405(1): 1385-8947.
[26] LU L, LI L, FAN S, et al. Strong silk fibers containing cellulose nanofibers generated by a bioinspired microfluidic chip[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14765-14774.
[27] LU L, FAN S, GENG L, et al. Flow analysis of regenerated silk fibroin/cellulose nanofiber suspensions via a bioinspired microfluidic chip[J]. Adv Mater Technol, 2021, 6(10): 2100124.
doi: 10.1002/admt.202100124
[28] PARK J S, PARK C W, HAN S Y. Preparation and properties of wet-spun microcomposite filaments from various CNFs and alginate[J]. Polymers, 2021, 13(11): 1709-1727.
doi: 10.3390/polym13111709
[29] NECHYPORCHUK O, KARL M O, KRISHNE G V, et al. Continuous assembly of cellulose nanofibrils and nanocrystals into strong macrofibers through microfluidic spinning[J]. Advanced Materials Technologies, 2018, 7 (8): 1022-1027.
[30] HAKANSSON K M, FALL A B, LUNDELL F, et al. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments[J]. Nature Communications, 2014, 2(5):4018-4037.
[31] WEI L Y, DENG N P, WANG X X. Flexible ordered MnS@CNC/carbon nanofibers membrane based on microfluidic spinning technique as interlayer for stable lithium-metal battery[J]. Journal of Membrane Science, 2021, 637(7): 119615-119636.
doi: 10.1016/j.memsci.2021.119615
[32] WANG S, LI T, CHEN C, et al. Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers[J]. Advanced Functional Materials, 2018, 28(24): 1707491.
doi: 10.1002/adfm.201707491
[33] CHEN C H, ZHU C L, HUANG Y, et al. Regenerated bacterial cellulose microfluidic column for glycoproteins separation[J]. Carbohydrate Polymers, 2016, 137(6): 271-276.
doi: 10.1016/j.carbpol.2015.10.081
[34] KHUN N, ALIZADEHGIASHI M, GEVORKIAN A, et al. Temperature-mediated microfluidic extrusion of structurally anisotropic hydrogels[J]. Advanced Materials Technologies, 2019, 4 (6): 1800627.
doi: 10.1002/admt.201800627
[35] ZHANG C T, ZHANG T, DAI B B, et al. Rapid fabrication of composite hydrogel microfibers for weavable and sustainable antibacterial applications[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6534-6542.
[1] 李枫, 杨嘉豪, 赖耿昌, 王建南, 许建梅. 高分子聚合物栓塞微球的研究进展[J]. 纺织学报, 2021, 42(10): 180-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!