纺织学报 ›› 2022, Vol. 43 ›› Issue (04): 203-209.doi: 10.13475/j.fzxb.20201105507
摘要:
为促进数字化结构设计技术在服装制造业中的应用与发展,首先介绍了参数化制版与基于人工智能的二维纸样直接生成方法,以及三维虚拟缝合技术的发展现状;然后系统地概述了包括三维服装自动生成、虚拟立体裁剪、三维基型重建、三维服装模块化重组的虚拟服装模型的设计方法,总结了基于曲面展开的二维纸样获取技术,包括几何展开法、力学展开法以及几何力学相结合的方法。认为数字化服装结构设计技术在简化制版、摆脱经验依赖、实现可视化三维造型与二维平面转化等方面具有巨大潜力;结合人类创新潜能与计算机计算能力,在满足服装个性化与多元化的同时,提高制版准确率、建模精度与效率是未来数字化结构设计的发展方向。
中图分类号:
[1] |
HU Z H, DING Y S, ZHANG W B, et al. An interactive co-evolutionary CAD system for garment pattern design[J]. Computer-Aided Design, 2008, 40(12): 1094-1104.
doi: 10.1016/j.cad.2008.10.010 |
[2] | 宁冠华. 基于女性体型特征的女衫样板参数化关系模型研究[D]. 西安: 西安工程大学, 2013:9-10. |
NING Guanhua. Research on bouse pattern's parametric relation model based on the female physical characteristic[D]. Xi'an: Xi'an Polytechnic University, 2013:9-10. | |
[3] | 刘珊珊. 参数化服装制板的人体测量尺寸的约束关系[D]. 北京: 北京服装学院, 2012:6-8. |
LIU Shanshan. The constraint relationship of body measurement of parametric apparel pattern-making technology[D]. Beijing: Beijing Institute of Fashion Technology, 2012:6-8. | |
[4] |
XIU Y, WAN Z K, CAO W. A constructive approach toward a parametric pattern-making model[J]. Textile Research Journal, 2011, 81(10): 979-991.
doi: 10.1177/0040517510388552 |
[5] | 叶勤文, 王维杰, 陈咪, 等. 基于AutoCAD以及圆弧拟合曲线的参数化服装制版[J]. 毛纺科技, 2019, 47(9): 57-65. |
YE Qinwen, WANG Weijie, CHEN Mi, et al. Parametric apparel pattern-making based on AutoCAD and curve fitting with arc[J]. Wool Textile Journal, 2019, 47(9): 57-65. | |
[6] | 娄少红. 基于AutoCAD参数化功能的A型裙样板自动化生成[J]. 纺织学报, 2020, 41(1): 131-138. |
LOU Shaohong. Automatic generation of A-type skirt model based on AutoCAD parametric function[J]. Journal of Textile Research, 2020, 41(1): 131-138. | |
[7] | 张伶俐, 张皋鹏. 应用MatLab的服装纸样参数化平面制版[J]. 纺织学报, 2019, 40(1): 130-135. |
ZHANG Lingli, ZHANG Gaopeng. Parametric flat pattern design for clothing based on MatLab[J]. Journal of Textile Research, 2019, 40(1): 130-135. | |
[8] |
LIU K, ZHU C, TAO X, et al. Parametric design of garment pattern based on body dimensions[J]. International Journal of Industrial Ergonomics, 2019, 72: 212-221.
doi: 10.1016/j.ergon.2019.05.012 |
[9] | KALKANCI M, KURUMER G, ÖZTÜRK H, et al. Artificial neural network system for prediction of dimensional properties of cloth in garment manufacturing: case study on a T-shirt[J]. Fibres & Textiles in Eastern Europe, 2017, 25(4):135-140. |
[10] | NAYAK R, PADHYE R. Automation in garment manufacturing[M]. Cambrideg: Woodhead Publishing, 2018: 109-138. |
[11] | XING Y. An innovative approach for auto-generating the sleeve pattern sizes by artificial neural network model using MatLab[C]// WANG Z, LI T. Textile Bioengineering and Informatics Symposium in Conjunction with Asian Protective Clothing Conference. New York: Curran Associated Inc, 2014:667-674. |
[12] |
WANG Z, XING Y, WANG J, et al. A knowledge-supported approach for garment pattern design using fuzzy logic and artificial neural networks[J]. Multimedia Tools and Applications, 2020. DOI: 10.1007/s11042-020-10090-6.
doi: 10.1007/s11042-020-10090-6 |
[13] |
LIU K, WANG J, KAMALHA E, et al. Construction of a prediction model for body dimensions used in garment pattern making based on anthropometric data learning[J]. Journal of The Textile Institute, 2017, 108(12): 2107-2114.
doi: 10.1080/00405000.2017.1315794 |
[14] |
WANG Z, WANG J, XING Y, et al. Estimating human body dimensions using RBF artificial neural networks technology and its application in activewear pattern making[J]. Applied Sciences, 2019, 9(6): 1140.
doi: 10.3390/app9061140 |
[15] | PUNDIR N. Fashion technology: today and tomorrow[M]. Pitampura: Mittal Publications, 2007:138-223. |
[16] |
SAYEM A S M, KENNON R, CLARKE N. 3D CAD systems for the clothing industry[J]. International Journal of Fashion Design, Technology and Education, 2010, 3(2): 45-53.
doi: 10.1080/17543261003689888 |
[17] | DECAUDIN P. Virtual garments: a fully geometric approach for clothing design[C]// JULIUS D, WITHER J. Computer Graphics Forum. Hoboken: The Eurographics Association and John Wiley & Sons Ltd, 2006:625-634. |
[18] |
ROBSON C, MAHARIK R, SHEFFER A, et al. Context-aware garment modeling from sketches[J]. Computers & Graphics, 2011, 35(3): 604-613.
doi: 10.1016/j.cag.2011.03.002 |
[19] | GILLETTE R. Real-time dynamic wrinkling of coarse animated cloth[C]// PETERS C, VINING N. Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. New York: Association for Computing Machinery, 2015:17-26. |
[20] |
SHIMADA T, TADA Y. Approximate transformation of an arbitrary curved surface into a plane using dynamic programming[J]. Computer-Aided Design, 1991, 23(2): 153-159.
doi: 10.1016/0010-4485(91)90006-I |
[21] | BENDER J. Position-based simulation methods in computer graphics[C]// MÜLLER M, MACKLIN M. Eurographics (Tutorials). Goslar: The Eurographics Association, 2015:8. |
[22] | PATEL C. Tailornet: predicting clothing in 3D as a function of human pose, shape and garment style[C]// LIAO Z, PONS-MOLL G. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020:7365-7375. |
[23] | TESCHNER M. Optimized spatial hashing for collision detection of deformable objects[C]// HEIDELBERGER B, MÜLLER M. International Symposium on Vision, Modeling, and Visualization. Munich: Aka GmbH, 2003:47-54. |
[24] | ZACHMANN G. Minimal hierarchical collision detection[C]// Proceedings of the ACM Symposium on Virtual Reality Software and Technology. New York: Association for Computing Machinery, 2002:121-128. |
[25] |
HORIBA Y, AMANO T, INUI S, et al. Proposal of method for estimating clothing pressure of tight-fitting garment made from highly elastic materials: hybrid method using apparel CAD and finite element analysis software[J]. Journal of Fiber Science and Technology, 2021, 77(2): 76-87.
doi: 10.2115/fiberst.2021-0006 |
[26] |
BRUBACHER K, TYLER D, APEAGYEI P, et al. Evaluation of the accuracy and practicability of predicting compression garment pressure using virtual fit technology[J]. Clothing and Textiles Research Journal, 2021.DOI: 10.1177/0887302X21999314.
doi: 10.1177/0887302X21999314 |
[27] |
WANG C C L, WANG Y, YUEN M M F. Feature based 3D garment design through 2D sketches[J]. Computer-Aided Design, 2003, 35(7): 659-672.
doi: 10.1016/S0010-4485(02)00091-X |
[28] |
THOMASSEY S, BRUNIAUX P. A template of ease allowance for garments based on a 3D reverse methodology[J]. International Journal of Industrial Ergonomics, 2013, 43(5): 406-416.
doi: 10.1016/j.ergon.2013.08.002 |
[29] |
HONG Y, ZENG X, BRUNIAUX P, et al. Interactive virtual try-on based three-dimensional garment block design for disabled people of scoliosis type[J]. Textile Research Journal, 2016, 87(10): 1261-1274.
doi: 10.1177/0040517516651105 |
[30] | HONG Y, ZENG X, BRUNIAUX P, et al. Collaborative 3D-to-2D tight-fitting garment pattern design process for scoliotic people[J]. Fibres & Textiles in Eastern Europe, 2017, 25(5): 113-118. |
[31] | HUANG H, MOK P, KWOK Y, et al. Automatic block pattern generation from a 3D unstructured point cloud[J]. Research Journal of Textile & Apparel, 2010, 14(1):26-37. |
[32] |
WANG J, LU G, LI W, et al. Interactive 3D garment design with constrained contour curves and style curves[J]. Computer-Aided Design, 2009, 41(9): 614-625.
doi: 10.1016/j.cad.2009.04.009 |
[33] |
TURQUIN E, WITHER J, BOISSIEUX L, et al. A sketch-based interface for clothing virtual characters[J]. IEEE Computer Graphics and Applications, 2007, 27(1): 72-81.
doi: 10.1109/MCG.2007.1 |
[34] |
LIU K, ZENG X, BRUNIAUX P, et al. 3D interactive garment pattern-making technology[J]. Computer-Aided Design, 2018, 104: 113-124.
doi: 10.1016/j.cad.2018.07.003 |
[35] |
SUL I H, KANG T J. Interactive garment pattern design using virtual scissoring method[J]. International Journal of Clothing Science and Technology, 2006, 18(1/2): 31-42.
doi: 10.1108/09556220610637495 |
[36] |
MESUDA Y, INUI S, HORIBA Y. Virtual draping by mapping[J]. Computers in Industry, 2018, 95: 93-101.
doi: 10.1016/j.compind.2017.11.004 |
[37] |
MENG Y, MOK P Y, JIN X. Computer aided clothing pattern design with 3D editing and pattern alteration[J]. Computer-Aided Design, 2012, 44(8): 721-734.
doi: 10.1016/j.cad.2012.03.006 |
[38] |
WANG C C, WANG Y, YUEN M M. Design automation for customized apparel products[J]. Computer-Aided Design, 2005, 37(7): 675-691.
doi: 10.1016/j.cad.2004.08.007 |
[39] | CORDIER F, SEO H, MAGNENAT-THALMANN N. Made-to-measure technologies for an online clothing store[J]. IEEE Computer Graphics and Applications, 2003, 23(1): 38-48. |
[40] | ZHU Y, PENG Y, BOODAGHIAN A S L A. Dual adaptive adjustment for customized garment pattern[J]. Scientific Programming, 2019, 2019: 1-12. |
[41] | BROUET R, SHEFFER A, BOISSIEUX L, et al. Design preserving garment transfer[J]. ACM Transactions on Graphics, 2012, 31(4):1-11. |
[42] |
LI J, LU G. Modeling 3D garments by examples[J]. Computer-Aided Design, 2014, 49: 28-41.
doi: 10.1016/j.cad.2013.12.005 |
[43] |
KWOK T H, ZHANG Y Q, WANG C C, et al. Styling evolution for tight-fitting garments[J]. IEEE Transactions on Visualization and Computer Graphics, 2015, 22(5): 1580-1591.
doi: 10.1109/TVCG.2015.2446472 |
[44] | BARTLE A, SHEFFER A, KIM V G, et al. Physics-driven pattern adjustment for direct 3D garment editing[J]. ACM Transactions on Graphics, 2016, 35(4): 1-11. |
[45] | 席平. 三维曲面的几何展开[J]. 计算机学报, 1997(4): 315-322. |
XI Ping. Geometric approach of 3D surface develop-ment[J]. Chinese Journal of Computers, 1997(4): 315-322. | |
[46] |
PARIDA L, MUDUR S P. Constraint-satisfying planar development of complex surfaces[J]. Computer-Aided Design, 1993, 25(4): 225-232.
doi: 10.1016/0010-4485(93)90053-Q |
[47] | XIU Y. A survey on pattern-making technologies in garment CAD[C]// WAN Z K. IEEE Conference Anthology. Chongqing: IEEE, 2013:1-6. |
[48] | 樊劲, 周济, 王启付, 等. 基于弹簧质点模型的二维/三维映射算法[J]. 软件学报, 1999(2): 3-5. |
FAN Jin, ZHOU Ji, WANG Qifu, et al. 2D/3D isometric transformation using spring-mass system[J]. Journal of Software, 1999(2): 3-5. | |
[49] |
WANG C C, SMITH S S, YUEN M M. Surface flattening based on energy model[J]. Computer-Aided Design, 2002, 34(11): 823-833.
doi: 10.1016/S0010-4485(01)00150-6 |
[50] | 庄梅玲. 三维衣身原型曲面展平技术的研究[D]. 上海: 东华大学, 2010:51-86. |
ZHUANG Meiling. Research on flatting technology for 3-D basic body surface[D]. Shanghai: Donghua University, 2010:51-86. | |
[51] |
AONO M, BREEN D E, WOZNY M J. Fitting a woven-cloth model to a curved surface: mapping algorithms[J]. Computer-Aided Design, 1994, 26(4): 278-292.
doi: 10.1016/0010-4485(94)90074-4 |
[52] | 杨继新, 刘健, 肖正扬, 等. 复杂曲面的可展化及其展开方法[J]. 机械科学与技术, 2001, 20(4): 520-521. |
YANG Jixin, LIU Jian, XIAO Zhengyang, et al. A new method for making complex surface developable and its development[J]. Mechanical Science and Technology, 2001, 20(4): 520-521. | |
[53] |
AU C K, MA Y S. Garment pattern definition, development and application with associative feature approach[J]. Computers in Industry, 2010, 61(6): 524-531.
doi: 10.1016/j.compind.2010.03.002 |
[1] | 邹亚男, 夏风林, 董智佳, 黄梦婷, 储开元. 经编全成形脖套的结构设计与工艺实现[J]. 纺织学报, 2021, 42(12): 76-80. |
[2] | 黎博文, 王萍, 刘玉叶. 基于人体动态特征的三维服装虚拟试穿技术[J]. 纺织学报, 2021, 42(09): 144-149. |
[3] | 冀艳波, 王玲丽, 刘凯旋. 基于数字化三维人体模型的旗袍定制设计[J]. 纺织学报, 2021, 42(01): 133-137. |
[4] | 王显峰, 高天成, 肖军. 复合材料缝合技术的研究进展[J]. 纺织学报, 2019, 40(12): 169-177. |
[5] | 董九志, 宋宗建, 陈云军, 蒋秀明. 预制体缝合针稳定性分析及插刺机构改进设计[J]. 纺织学报, 2019, 40(10): 171-176. |
[6] | 张伶俐, 张皋鹏. 应用MatLab的服装纸样参数化平面制版[J]. 纺织学报, 2019, 40(01): 130-135. |
[7] | 何晓昀 韦平 张林 邓斌攸 潘云峰 苏真伟. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018, 39(06): 131-135. |
[8] | 辛芳芳. 基于最小方差支持向量机的织物热湿舒适性预测[J]. 纺织学报, 2011, 32(7): 60-64. |
[9] | 李端;钟跃崎;. 基于骨架重合的真实人体模型动态仿真[J]. 纺织学报, 2010, 31(11): 140-144. |
[10] | 张向辉;王云仪;李俊;张文斌. 防护服装结构设计对着装舒适性的影响[J]. 纺织学报, 2009, 30(06): 138-144. |
[11] | 邹平. 逐步回归中服装结构设计数学模型部位间的影响关系[J]. 纺织学报, 2007, 28(2): 95-99. |
[12] | 戴建国;陈敏之;何瑛. 立体裁剪及其适用性分析[J]. 纺织学报, 2006, 27(3): 117-120. |
[13] | 胡觉亮;董建明;何瑛;邹奉元. 基于人工神经网络的服装结构设计[J]. 纺织学报, 2006, 27(2): 49-52. |
[14] | 吕志军;项前;殷祥刚;杨建国. 知识表达及其在毛纺织工艺设计中的应用[J]. 纺织学报, 2005, 26(6): 115-117. |
[15] | 甘应进;陈东生;蒋丽君. 服装结构设计多媒体教学系统的研发[J]. 纺织学报, 2005, 26(1): 138-140. |
|