纺织学报 ›› 2022, Vol. 43 ›› Issue (04): 40-46.doi: 10.13475/j.fzxb.20210403107

• 纤维材料 • 上一篇    下一篇

仿星型拓扑几何结构聚氨酯/聚二甲基硅氧烷防水透湿膜制备与性能

孙哲茹, 张庆乐, 郝林聪, 程璐, 夏鑫()   

  1. 新疆大学 纺织与服装学院, 新疆 乌鲁木齐 830046
  • 收稿日期:2021-04-12 修回日期:2021-11-14 出版日期:2022-04-15 发布日期:2022-04-20
  • 通讯作者: 夏鑫
  • 作者简介:孙哲茹(1995—),女,硕士生。主要研究方向为功能纺织纤维膜材料的开发与应用。
  • 基金资助:
    国家自然科学基金面上项目(51763022)

Preparation and performance of polyurethane/polydimethylsiloxane waterproof and moisture permeable membrane with star like topological geometry structure

SUN Zheru, ZHANG Qingle, HAO Lincong, CHENG Lu, XIA Xin()   

  1. College of Textile and Clothing, Xinjiang University, Urumqi, Xinjiang 830046, China
  • Received:2021-04-12 Revised:2021-11-14 Published:2022-04-15 Online:2022-04-20
  • Contact: XIA Xin

摘要:

为提高纳米纤维膜的防水性并探究膜表面微观结构对膜性能的影响机制,采用高可纺性的聚氨酯(PU)和无氟、低表面能的聚二甲基硅氧烷(PDMS)为原料,通过静电纺丝法制备了PU/PDMS纳米纤维膜,然后在该纤维膜基材上采用静电喷雾法沉积PU/PDMS微颗粒得到对环境友好的防水透湿膜,对其形貌、防水性能、透气透湿性能和力学性能进行测试与分析。结果表明:静电喷雾引入的微颗粒之间以超细纤维连接构成了仿星型拓扑几何结构,与PU/PDMS纳米纤维基材发生物理粘连,形成了一种稳定的膜结构,其防水性能与力学性能均得到一定程度改善;当静电喷雾纺丝溶液中PU/PDMS质量分数为6%,喷雾时间为2 h时,防水透湿膜表现出最优异的防水性,其静态水接触角达到149.1°,透湿率为5 566.7 g/(m2·d),透气率为11.50 mm/s,断裂强度为8.22 MPa,断裂伸长率为247.1%。

关键词: 静电纺丝, 静电喷雾, 仿星型拓扑几何结构, 防水透湿膜, 聚氨酯, 聚二甲基硅氧烷

Abstract:

In order to study the waterproof properties of nanofiber membranes and explore the mechanism of the influence of the microstructure of the membrane surface on the membrane properties, polyure-thane(PU)/polydimethylsiloxane(PDMS) nanofiber membranes were prepared by electrospinning method with high spinning PU and fluorinated low surface energy PDMS as raw materials. The PU/PDMS particles were deposited by electrostatic spray on the fiber membrane substrate, leading to the creation of an environment-friendly waterproof and moisture permeable membrane. The morphology, waterproof properties, air and moisture permeability and mechanical properties were tested and analyzed. The results showed that the superfine fiber links formed by electrostatic spray formed a star like topological structure, and formed a stable membrane structure with the PU/PDMS nanofiber substrate, with improved waterproof and mechanical properties. When the electrostatic spraying PU/PDMS mass fraction is 6% and the time is 2 h, the nanofiber membrane shows the best water repellency. Under this conditions, the static contact angle of the water reaches 149.1°, the moisture permeability is 5 566.7 g/(m2·d), the air permeability is 11.50 mm/s, the breaking strength is 8.22 MPa, and the elongation at break is 247.1%.

Key words: electrospinning, electrostatic spray, star like topological geometry structure, waterproof and moisture permeable membrane, polyurethane, polydimethylsiloxane

中图分类号: 

  • TS174.8

图1

PU/PDMS防水透湿膜的制备示意图"

表1

PU/PDMS静电喷雾纺丝液参数"

样品编号 PU/PDMS质量
分数/%
静电喷
雾时间/h
0# 0 0
1#
3
1
2# 2
3# 3
4# 6 1
5# 2
6# 3
7# 9 1
8# 2
9# 3

图2

未经过静电喷雾处理的PU/PDMS纳米纤维SEM照片"

图3

静电喷雾后PU/PDMS防水透湿膜的SEM照片"

图4

不同质量分数的静电喷雾纺丝液得到的微结构SEM照片及微颗粒结构的模型图"

图5

PU/PDMS防水透湿膜的水接触角"

图6

PU/PDMS防水透湿膜的浸润模型"

图7

水滴在防水透湿膜表面的动态测试过程"

图8

PU/PDMS防水透湿膜的防水性能展示"

表2

PU/PDMS防水透湿膜的透湿率和透气率"

样品编号 透湿率/
(g·(m2·d)-1)
透气率/
(mm·s-1)
0# 7 533.3 30.91
1# 7 266.7 21.59
2# 6 833.1 13.44
3# 6 266.7 11.23
4# 6 466.7 18.88
5# 5 566.7 11.50
6# 4 733.3 10.89
7# 5 966.7 14.68
8# 4 633.3 10.65
9# 4 533.3 10.22

表3

PU/PDMS防水透湿膜的力学性能"

样品编号 断裂强度/MPa 断裂伸长率/%
0# 7.37 291.4
1# 7.63 269.6
2# 7.91 263.2
3# 8.20 260.9
4# 8.13 248.5
5# 8.22 247.1
6# 8.30 244.3
7# 8.71 239.5
8# 8.92 235.6
9# 9.23 233.7
[1] 杨文秀, 周羿恬, 吕红丽, 等. TPU/PAN静电纺防水透湿膜的制备[J]. 纺织导报, 2019(1):89-92.
YANG Wenxiu, ZHOU Yitian, LÜ Hongli, et al. Preparation of TPU/PAN electrospun waterproof & moisture permeable film[J]. China Textile Leader, 2019(1):89-92.
[2] 丁子寒, 初曦, 邹婷婷, 等. 防水透湿织物的研究进展[J]. 服装学报, 2019, 4(5):383-387,419.
DING Zihan, CHU Xi, ZOU Tingting, et al. Research progress on waterproof and moisture permeable fabric[J]. Journal of Clothing Research, 2019, 4(5):383-387,419.
[3] 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(3):130-135.
DING Zihan, QIU Hua. Preparation and performance of nano-silica modified water-based polyurethane waterproof and moisture-permeable coated fabrics[J]. Journal of Textile Research, 2021, 42(3): 130-135.
[4] SHENG Junlu, ZHANG Min, XU Yue, et al. Tailoring water-resistant and breathable performance of polyacrylonitrile nanofibrous membranes modified by polydimethylsiloxane[J]. ACS Applied Materials & Interfaces, 2016, 8(40):27218-27226.
[5] 李智勇, 邵一卿, 孙窈, 等. 含氟聚氨酯的合成及其静电纺膜复合织物的防酸透湿性能[J]. 纺织学报, 2017, 38(10):7-12.
LI Zhiyong, SHAO Yiqing, SUN Yao, et al. Synthesis of fluorinated polyurethane and acid-proofness and water permeability of electrospun nanofiber membrane composite fabrics[J]. Journal of Textile Research, 2017, 38(10):7-12.
[6] LASSEUGUETTE Elsa, MALPASS-EVANS Richard, CASALINI Sara. Optimization of the fabrication of amidoxime modified PIM-1 electrospun fibres for use as breathable and reactive materials[J]. Polymer, 2020, 213:123205.
doi: 10.1016/j.polymer.2020.123205
[7] DU Xuanxuan, XIN Binjie, WANG Chun, et al. Waterproof and moisture permeable nanofibrous membranes with multi-scale cross-linked structure[J]. Journal of Natural Fibers, 2021, 1790(1):1-13.
[8] YANG Fangfang, LI Yang, YU Xi, et al. Hydrophobic polyvinylidene fluoride fibrous membranes with simultaneously water/windproof and breathable performance[J]. RSC Advances, 2016, 6:87820-87827.
doi: 10.1039/C6RA17565A
[9] SHENG Junlu, XU Yue, YU Jianyong, et al. Robust fluorine-free superhydrophobic amino-silicone oil/SiO2 modification of slectrospun polyacrylonitrile membranes for waterproof-breathable application[J]. ACS Appl Mater Interfaces, 2017, 9: 15139-15147.
doi: 10.1021/acsami.7b02594
[10] ZHANG Hao, MA Yong, TAN Jiaojun, et al. Robust, self-healing, superhydrophobic coatings highlighted by a novel branched thiol-ene fluorinated siloxane nanocomposites[J]. Composites Science and Technology, 2016, 137:78-86.
doi: 10.1016/j.compscitech.2016.10.023
[11] 张琼, 刘翰霖, 李平平, 等. 聚氨酯/二氧化硅复合超细纤维膜的制备及其防水透湿性能[J]. 纺织学报, 2019, 40(2):1-7.
ZHANG Qiong, LIU Hanlin, LI Pingping, et al. Preparation and waterproof and moisture-permeable properties of electrospun polyurethane/silica composite superfine fiber membrane[J]. Journal of Textile Research, 2019, 40(2):1-7.
doi: 10.1177/004051757004000101
[12] WU Jie, LI Xin, WU Yang, et al. Rinse-resistant superhydrophobic block copolymer fabrics by electrospinning, electrospraying and thermally-induced self-assembly[J]. Applied Surface Science, 2017, 422: 769-777.
doi: 10.1016/j.apsusc.2017.06.076
[13] 饶丽仙. 不同拓扑结构热塑性聚氨酯微纳米纤维膜的制备及性能研究[D]. 上海: 东华大学, 2020:41-42.
RAO Lixian. Preparation and properties of thermoplastic polyurethane microfiber films with different topological structures[D]. Shanghai: Donghua University, 2020:41-42.
[14] 范刚. 基于电射流不稳定性的聚苯乙烯材料制备及超疏水性研究[D]. 杭州: 浙江大学, 2017:32-53.
FAN Gang. Preparation and superhydrophobic properties of polystyrene materials based on jet instability[D]. Hangzhou: Zhejiang University, 2017:32-53.
[15] 苏星, 彭云峰. 超疏水的理论模型发展及其影响因素分析[J]. 功能材料, 2016, 47(S2):1-9.
SU Xing, PENG Yunfeng. Development of superhydrophobic theoretical model and analysis of its influencing factors[J]. Functional Materials, 2016, 47(S2): 1-9.
[16] 陈凯, 王强, 孙婷, 等. 表面微结构设计对材料疏水及防冰性能影响研究[J]. 化工新型材料, 2017, 45(10):103-105.
CHEN Kai, WANG Qiang, SUN Ting, et al. Effect of surface microstructure design on hydrophobic and anti icing properties of materials[J]. New Chemical Materials, 2017, 45 (10): 103-105.
[17] 王博伟. 表面微结构对材料疏冰性能的影响[D]. 哈尔滨: 哈尔滨工程大学, 2019:22-23.
WANG Bowei. Effect of surface microstructure on ice thinning properties of materials[D]. Harbin: Harbin Engineering University, 2019:22-23.
[1] 解开放, 罗凤香, 包新军, 周衡书, 徐广标. 高耐磨性复合涂层涤纶通丝的制备及其性能[J]. 纺织学报, 2022, 43(03): 123-131.
[2] 金旭, 刘方, 杜嬛, 华超, 公旭中, 张秀芹, 汪滨. 纳米纤维负载型纳米零价铁基材料在环境修复中的应用研究进展[J]. 纺织学报, 2022, 43(03): 201-209.
[3] 张宇, 刘来俊, 李超婧, 晋巧巧, 谢千阳, 李佩伦, 王富军, 王璐. 外泌体功能化串晶结构纤维膜的制备及其成骨分化性能[J]. 纺织学报, 2022, 43(03): 24-30.
[4] 张爱琴, 郝佳程, 王芷, 王永超, 刘淑强, 董海亮, 贾虎生, 许并社. 键合型高分子荧光纤维的制备及其荧光增强机制[J]. 纺织学报, 2022, 43(03): 50-57.
[5] 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70.
[6] 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115.
[7] 林美霞, 王嘉雯, 肖爽, 王晓云, 刘皓, 何崟. 高灵敏超压缩生物基炭化材料柔性压力传感器的制备及其性能[J]. 纺织学报, 2022, 43(02): 61-68.
[8] 马逸平, 樊武厚, 吴晋川, 蒲宗耀. 全水基杂化型无氟防水剂制备及其在涤/棉织物防水整理中应用[J]. 纺织学报, 2022, 43(02): 183-188.
[9] 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73.
[10] 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42.
[11] 贾琳, 王西贤, 李环宇, 张海霞, 覃小红. 聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 34-41.
[12] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
[13] 朱兰芳, 白洁, 周吟澄, 侯成伟. 超声波处理对涤纶织物聚氨酯涂层中4,4'-二氨基二苯甲烷的影响[J]. 纺织学报, 2021, 42(11): 124-128.
[14] 周园园, 郑煜铭, 吴小琼, 邵再东. 静电纺纳米纤维光催化剂性能增强方法的研究进展[J]. 纺织学报, 2021, 42(11): 179-186.
[15] 吴钦鑫, 侯成义, 李耀刚, 张青红, 秦宗益, 王宏志. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(09): 24-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!