纺织学报 ›› 2022, Vol. 43 ›› Issue (05): 109-115.doi: 10.13475/j.fzxb.20210502907

• 纺织工程 • 上一篇    下一篇

远红外锦纶织物对乳腺肿瘤细胞增殖的影响

慕怡菲1, 金子敏1(), 阎玉秀2, 吴德昊3, 周文龙1,4, 陶建伟5   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江理工大学 服装学院,浙江 杭州 310018
    3.浙江大学肿瘤研究所, 浙江 杭州 310009
    4.温州理工学院, 浙江 温州 325035
    5.浙江棒杰数码针织品有限公司, 浙江 义乌 322000
  • 收稿日期:2021-05-13 修回日期:2021-12-29 出版日期:2022-05-15 发布日期:2022-05-30
  • 通讯作者: 金子敏
  • 作者简介:慕怡菲(1994—),女,博士生。主要研究方向为功能纺织品。
  • 基金资助:
    浙江省科技厅省级新产品试制计划项目(2018D60SA733456)

Effect of far infrared polyamide fabrics on proliferation of breast cancer cells

MU Yifei1, JIN Zimin1(), YAN Yuxiu2, WU Dehao3, ZHOU Wenlong1,4, TAO Jianwei5   

  1. 1. College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University,Hangzhou, Zhejiang 310018, China
    2. School of Fashion Design & Engineering, Zhejiang Sci-Tech University,Hangzhou, Zhejiang 310018, China
    3. Cancer Institute of Zhejiang University, Hangzhou, Zhejiang 310009,China
    4. Wenzhou University of Technology, Wenzhou, Zhejiang 325035, China
    5. Zhejiang Bangjie Digital Knitwear Co., Ltd., Yiwu, Zhejiang 322000, China
  • Received:2021-05-13 Revised:2021-12-29 Published:2022-05-15 Online:2022-05-30
  • Contact: JIN Zimin

摘要:

为探究远红外织物对乳腺肿瘤患者的辅助治疗效应,使用6种不同的远红外锦纶织物和普通锦纶织物对MCF7、Bcap37和MDA-MB-231 3种乳腺癌细胞进行辐射培养,对比分析了织物材料以及辐射时长对3种乳腺癌细胞增殖的影响。结果表明:不同远红外锦纶织物的远红外光发射率有所差异,其中茶叶碳锦纶的远红外光发射率在6种远红外织物中最强;6种远红外织物可不同程度地抑制MCF7和Bcap37 乳腺肿瘤细胞的增殖,对MDA-MB-231细胞也有抑制作用但不显著;随着远红外光辐射时长的延长,远红外锦纶织物的远红外光发射率越高,其抑制乳腺肿瘤细胞增殖的效果越显著,从细胞生物学角度说明远红外织物可抑制且不促进乳腺肿瘤细胞的增殖,为探究穿戴远红外织物作为乳腺癌患者的辅助治疗提供理论参考。

关键词: 锦纶, 远红外纤维, 远红外织物, 乳腺肿瘤细胞, 细胞增殖

Abstract:

In order to explore the adjuvant effect of far-infrared fabrics on breast cancer patients, 6 types of far infrared polyamide fabrics were compared with the ordinary polyamide fabrics in irradiating 3 breast cancer cells, i.e., MCF7, Bcap37 and MDA-MB-231, and the effects of fabrics and radiation duration on the proliferation of 3 types of breast cancer cells were examined. The results show that the emissivities of different far infrared polyamide fabrics are different, and the far infrared emissivity of tea carbon polyamide is the strongest among the 6 far infrared fabrics. The 6 types of far infrared fabrics inhibit the proliferation of MCF7 and Bcap37 breast cancer cells to different degrees, but not significantly in the case of MDA-MB-231 cell. With the increase of far infrared radiation time, the higher the far infrared emissivity of the fabric, the more significant the effect of inhibiting the proliferation of breast cancer cells. This study shows that far infrared fabrics are able to inhibit but not promote the proliferation of breast cancer cells from the perspective of cell biology, and provide a theoretical basis for exploring the wearing of far-infrared fabrics as adjuvant therapy for breast cancer patients.

Key words: polyamide, far infrared fiber, far infrared fabric, breast cancer cell, cell proliferation

中图分类号: 

  • TS101.4

表1

织物规格"

织物
编号
厚度/
mm
面密度/
(g·m-2)
横密/(线圈数·
(10 cm)-1)
纵密/(线圈数·
(10 cm)-1)
BCF 0.81 0.029 6 168 214
CCF 0.82 0.029 6 168 234
GF 0.82 0.029 6 168 212
BGF 0.82 0.029 5 168 236
TCF 0.82 0.029 8 168 224
VF 0.81 0.029 7 168 217
NC 0.74 0.021 8 168 226

图1

织物辐射培养盒"

图2

普通锦纶及6种远红外锦纶的表面形态(×400)"

表2

普通锦纶及6种远红外锦纶织物远红外光发射率"

织物编号 织物远红外光发射率
BCF 0.967 0
CCF 0.967 3
GF 0.965 0
BGF 0.964 3
TCF 0.972 0
VF 0.969 3
NC 0.832 0

图3

3种乳腺肿瘤细胞在普通锦纶与茶叶碳锦纶表面的形貌(×40)"

图4

乳腺肿瘤细胞在不同锦纶织物中的增殖曲线"

图5

辐射时长对乳腺肿瘤细胞增殖的影响"

图6

远红外光发射率与乳腺肿瘤细胞增殖的关系"

[1] SHUI S, WANG X, CHIANG J Y, et al. Far-infrared therapy for cardiovascular, autoimmune, and other chronic health problems: a systematic review[J]. Experimental Biology & Medicine, 2015, 240(10): 1257-1265.
[2] ZHAO Q, DONG C, LIU Z F, et al. The effectiveness of aquatic physical therapy intervention on disease activity and function of ankylosing spondylitis patients: a meta-analysis[J]. Psychology, Health & Medicine, 2020, 25(7):832-843.
[3] GUSTAV J D, PETRA V, ILKA S, et al. Integrative oncology for breast cancer patients: introduction of an expert-based model[J]. Bmc Cancer, 2012, 12(1):539.
doi: 10.1186/1471-2407-12-539
[4] CHENG B, HE H C, HUANG T, et al. Gold nanosphere gated mesoporous silica nanoparticle responsive to near-infrared light and redox potential as a theranostic platform for cancer therapy[J]. Journal of Biomedical Nanotechnology, 2016, 12(3):435-449.
doi: 10.1166/jbn.2016.2195
[5] ANA D, NINA K, MARIA J A, et al. Probing intermolecular interactions in water/ionic liquid mixtures by far-infrared spectroscopy[J]. The Journal of Physical Chemistry B, 2007, 111(17): 4446-4452.
doi: 10.1021/jp068777n
[6] LI K, XIA L, LIU N F, et al. Far infrared ray (FIR) therapy: an effective and oncological safe treatment modality for breast cancer related lymphedemal[J]. Journal of Photochemistry & Photobiology B: Biology, 2017, 172: 95-101.
[7] LI J, LYV Z, LI Y, et al. A theranostic prodrug delivery system based on Pt(Ⅳ) conjugated nano-graphene oxide with synergistic effect to enhance the therapeutic efficacy of Pt drugl[J]. Biomaterials, 2015, 51: 12-21.
doi: 10.1016/j.biomaterials.2015.01.074
[8] 吴继辉, 邹婉晴, 汤明竹, 等. 负离子远红外功能织物对乳腺增生大鼠模型的影响[J]. 纺织学报, 2019, 40(6):69-73.
WU Jihui, ZOU Wanqing, TANG Mingzhu, et al. Effect of anion far infrared functional fabric on rat model of mammary gland hyperplasia[J]. Journal of Textile Research, 2019, 40 (6): 69-73.
[9] NAGASAWA H, INADA K, ISHIGAME H, et al. Different schedules of whole-body hyperthermia with or without glucose for the inhibition of mammary tumors and uterine adenomyosis in SHN mice[J]. Bulletin of the Faculty of Agriculture Meiji University, 2001, 127: 43-51.
[10] JIA Y P, SONG Y, QU Y, et al. Mesoporous PtPd nanoparticles for ligand-mediated and imaging-guidedchemo-photothermal therapy of breast cancer[J]. Nano Research, 2020, 13: 1739-1748.
doi: 10.1007/s12274-020-2800-2
[11] WEI L L, CHUNG F J K. Development of a warmingmulti-functional fabric: part I: the analytichierarchy process combined with thetechnique for order preference bysimilarity to an ideal solution for theoptimization of the multi-quality meltspinning parameters in far-infrared functional yarn[J]. Textile Research Journal, 2018, 89(11): 2247-2259.
doi: 10.1177/0040517518790972
[12] 龚佳佳, 顾学平, 肖俊, 等. 纺织品远红外功能整理[J]. 针织工业, 2018(11): 78-80.
GONG Jiajia, GU Xueping, XIAO Jun, et al. Far-infrared functional finishing of textiles[J]. Knitting Industries, 2018(11): 78-80.
[13] AUDRONE S, VITALIJA R, DIANA K, et al. Investigation of thermal behavior of 3D PET knitswith different bioceramic additives[J]. Polymers, 2020, 12(6):1319.
doi: 10.3390/polym12061319
[14] 吴迪. 几种功能纺织品远红外发射率试验方法的比对研究[C]// 全国第十五届红外加热暨红外医学发展研讨会论文及论文摘要集. 锦州: 锦州市光学学会, 2015: 250-258.
WU Di. Comparative study on test methods for far infrared emissivity of several functional textiles[C]// Proceedings and Abstracts of the 15th National Symposium on Infrared Heating and Infrared Medicine Development. Jinzhou: The Optical Society of Jinzhou, 2015: 250-258.
[15] REN J, LI P, ZHAO H, et al. Assessment of tissue perfusion changes in port wine stains after vascular targeted photodynamic therapy: a short-term follow-up study[J]. Lasers in Medical Science, 2014, 29(2): 781-788.
doi: 10.1007/s10103-013-1420-4
[16] 许强. 远红外混纺纤维含量分析初探[J]. 中国纤检, 2014(21):80-83.
XU Qiang. Analysis of far infrared blended fiber content[J]. China Fiber Inspection, 2014(21): 80-83.
[17] ZHAO F, HAO Z, ZHONG Y, et al. Discovery of breast cancer risk genes and establishment of a prediction model based on estrogen metabolism regulation[J]. BMC Cancer, 2021, 21(1): 194.
doi: 10.1186/s12885-021-07896-4
[18] JUN I, KIKUJI Y, TATSUO I, et al. The effects inhibiting the proliferation of cancer cells by far-infrared radiation (FIR) are controlled by the basal expression level of heat shock protein (HSP) 70A[J]. Med Oncol, 2008, 25: 229-237.
doi: 10.1007/s12032-007-9020-4
[1] 陈香香, 吴婷, 周伟涛, 孙洋洋, 杜姗, 张晓莉. 双氧水/抗坏血酸引发甲基丙烯酸甲酯接枝改性锦纶6织物及其性能[J]. 纺织学报, 2021, 42(09): 131-136.
[2] 王建明, 李永锋, 郝新敏, 闫金龙, 乔荣荣, 王美慧. 生物基锦纶56和锦纶66的结构与吸放湿性能评价[J]. 纺织学报, 2021, 42(08): 1-7.
[3] 张华, 张杰, 高燕. 液氨处理对锦纶/棉混纺织物性能的影响[J]. 纺织学报, 2021, 42(06): 128-132.
[4] 卢雪, 刘秀明, 房宽峻, 李瀚宇, 李翔, 高闯. 锦纶/棉混纺织物的耐久无氟拒水整理[J]. 纺织学报, 2021, 42(03): 14-20.
[5] 王迎, 王怡婷, 吴佳庆, 郭亚飞, 郝新敏. 生物基锦纶56用抗静电纺丝油剂的复配及其对短纤维可纺性的影响[J]. 纺织学报, 2021, 42(01): 84-89.
[6] 李昌龄, 王文聪, 华东, 周建平, 阚建兴, 王鸿博. 锦纶基磁性纤维的制备及其性能[J]. 纺织学报, 2019, 40(11): 26-31.
[7] 曹意 陈韶娟 尹德河 曹洪花 马建伟. 碱溶性涤纶/锦纶6海岛纤维各组分性能解析[J]. 纺织学报, 2018, 39(09): 15-21.
[8] 刘娜 敖利民 黄金梅 林艳冰 姚晶 冯辉. 长丝纱断丝性测试与表征[J]. 纺织学报, 2018, 39(06): 29-35.
[9] 刘凡 钱晓明 赵宝宝 钱幺 朵永超. 柔软处理对涤纶/锦纶6中空桔瓣型超细纤维非织造布性能的影响[J]. 纺织学报, 2018, 39(03): 114-119.
[10] 姜生 倪诗吟 张利娟. 锦纶对纺织废胶-受阻酚微观形态与性能的影响[J]. 纺织学报, 2017, 38(03): 72-77.
[11] 张海霞 张喜昌. 凉爽锦纶纤维的热湿性能[J]. 纺织学报, 2016, 37(07): 39-43.
[12] 刘雷艮 沈忠安 洪剑寒. 静电纺高效防尘复合滤料的制备及其性能[J]. 纺织学报, 2015, 36(07): 12-16.
[13] 丛洪莲 张永超. 生物基锦纶的性能及其在针织面料中的应用[J]. 纺织学报, 2015, 36(07): 22-27.
[14] 万爱兰 丛洪莲 蒋高明 钟君 王敏 . 包芯色纱性能及其对横编成形提花鞋面织物的影响[J]. 纺织学报, 2015, 36(07): 36-42.
[15] 郝新敏 郭亚飞. 生物基锦纶环保加工技术及其应用[J]. 纺织学报, 2015, 36(04): 160-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!