纺织学报 ›› 2022, Vol. 43 ›› Issue (05): 43-48.doi: 10.13475/j.fzxb.20211201806

• 特约专栏:第十一届中国纺织学术年会专家观点 • 上一篇    下一篇

废旧棉与涤纶纺织品化学法循环再生利用的研究进展

陈龙1(), 周哲1, 张军2, 徐世美3, 倪延朋4   

  1. 1.东华大学 材料科学与工程学院, 上海 201620
    2.中国科学院化学研究所, 北京 100190
    3.四川大学 化学学院, 四川 成都 610207
    4.青岛大学 纺织服装学院, 山东 青岛 266071
  • 收稿日期:2021-12-08 修回日期:2022-02-21 出版日期:2022-05-15 发布日期:2022-05-30
  • 作者简介:陈龙(1975—),男,研究员,博士。主要研究方向为化学纤维的功能化、智能化和循环利用。E-mail: happyjack@dhu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2020YFC1910300)

Research progress in chemical recycling of waste cotton and polyester textiles

CHEN Long1(), ZHOU Zhe1, ZHANG Jun2, XU Shimei3, NI Yanpeng4   

  1. 1. College of Material Science and Engineering, Donghua University, Shanghai 201620, China
    2. Institute of Chemistry,Chinese Academy of Sciences, Beijing 100190, China
    3. College of Chemistry, Sichuan University, Chengdu, Sichuan610064, China
    4. College of Textiles and Clothing, Qingdao University, Qingdao, Shandong 206071, China
  • Received:2021-12-08 Revised:2022-02-21 Published:2022-05-15 Online:2022-05-30

摘要:

针对我国废旧纺织品中棉和涤纶制品产量高、循环利用率低、高品质产品少等问题,介绍了化学法循环再生利用废旧棉、涤纶纺织品的方法,分析了废旧棉再生浆粕及其纤维制备技术和废旧涤纶纺织品解聚单体及其再聚合技术的现状。相关研究表明:目前已能采用低比例废旧棉再生浆粕与原生木浆混合的方式实现废旧棉再生Lyocell纤维的小规模生产;采用乙二醇醇解-甲醇酯交换技术可实现废旧涤纶纺织品化学法再生聚酯的万吨级规模生产,但仍存在技术难度大、生产成本高、回收利用率低、产品品质差,且面临“治废产废”程度有待进一步降低等难题;开发废旧棉、涤纶纺织品清洁再生与高值化利用技术是废旧纺织品循环利用的发展趋势。

关键词: 纺织品, 废旧棉, 废旧涤纶, 化学再生, 循环再生

Abstract:

A large number of waste cotton and polyester textiles are produced in China, but the recycling rate is low and high quality products are rare. Focusing on this problem, the recycling of waste cotton and polyester fabrics based on chemical recycling was reviewed. The technology of waste cotton pulp preparation and its fiber spinning, the monomer preparation from the depolymerization of waste polyester and its polymerization were examined. The literature review indicated that the small-scale production of waste cotton was involved in the making of regenerated Lyocell fibers by mixing low proportion of waste cotton regenerated pulp with the primary wood pulp, and that 10 000-ton scale production of chemically regenerated polyethylene terephthalate(PET) from waste PET textiles has been achieved through glycol alcoholysis-methanol ester exchange technology. However, there are still problems such as technical difficulties, high production cost, low recovery and utilization rate, poor product quality, and high degree of " waste production caused by waste treatment ". Hence, key technology development for waste textile recycling should be the focus of research emphasizing on clean recycling and high value utilization of waste cotton and polyester textiles.

Key words: textiles, waste cotton, waste polyester, chemical recycling, recycling and regeneration

中图分类号: 

  • TS106

表1

废旧棉纺织品回收的相关研究"

机构名称 相关研究内容 相关研究成果 成果应用情况 参考文献
芬兰VTT技术研究中心 废旧棉纺织品的溶解 采用离子液体溶解废旧纺织品中的纤维素 研究阶段 [16]
瑞典Re:newcell公司 废旧棉再生浆粕 以废弃棉织物为原料,制备废旧棉再生浆粕 小批量供应 [17]
奥地利Lenzing集团 废旧棉再生浆粕及再生Lyocell纤维 废旧棉再生浆粕与木浆混合,制备了再生Lyocell纤维(REFIBRATM) 实现量产,其中消费后废旧棉再生浆粕占比为10% [18]
东华大学/齐鲁工业大学 废旧棉纺织品蒸煮制浆及再生Lyocell纺丝 制备了废旧棉纺织品再生浆粕,并纺制了Lyocell纤维(干态断裂强度为2.7 cN/dtex) 实验室研究阶段 [19-20]
赛得利(中国)纤维有限公司 利用废旧棉再生浆粕制备粘胶纤维 废旧棉再生浆与木浆混合,实现了万吨级再生粘胶纤维的量产 成功量产 [21]

图1

废旧棉纺织品化学循环再生的技术现状"

图2

废旧涤纶纺织品化学循环再生的技术现状"

表2

废旧涤纶纺织品回收的相关研究"

机构名称 相关研究内容 相关研究成果 成果应用情况 参考文献
日本帝人公司 PET乙二醇醇解-甲醇酯交换 将废旧涤纶纺织品经乙二醇解得到对苯二甲酸乙二醇酯(BHET),再经甲醇交换得到高纯度对苯二甲酸二甲酯 已商用,但对非涤组分处理困难 [35]
美国杜邦公司 钛系催化剂 开发了有机钛系催化剂Tyzor,与锑催化剂相比,反应活性更高 工业化,应用于原生聚酯的生产 [40]
四川大学/青岛大学 聚酯绿色合成、化学循环回收的新催化体系和方法 开发的新型催化剂与方法可应用于PET、PBT聚酯的合成与高效化学回收 实验室研究阶段 [41-42]
浙江佳人新材料有限公司 废旧涤纶纺织品化学法循环再生技术 将回收的涤纶纺织品化学解聚,得到高纯度DMT,并通过酯交换和聚合反应制备了高品质纤维级再生PET切片 工业化阶段,但PET解聚效率和单体回收率较低,且副产物难以回收利用,再生PET切片中重金属含量高 [37]
东华大学 钛系催化剂 开发了有机无机杂化钛系催化剂,可应用于PET、PBT及其共聚酯的合成,树脂的b值优于锑系催化剂切片和更高的L 小试阶段,已在浙江佳人新材料有限公司DMT法再生PET生产线试用,成功制备无锑再生聚酯 [43]
[1] 废旧化纤纺织品资源再生循环技术发展战略研究报告[R]. 北京: 中国工程院, 2018.
Research report on recycling technology development strategy of waste chemical fiber textile resources[R]. Beijing: Chinese Academy of Engineering, 2018.
[2] 中国废旧纺织品再生利用技术进展白皮书[R]. 贵阳: 中国再生资源回收利用协会, 2019.
White paper on the progress of recycling technology of waste textile in china[R]. Guiyang: China Renewable Resources Recycling and Utilization Association, 2019.
[3] Declaration of extra-financial perfor-mance[R/OL]. Villeneuve d'Ascq: Decathlon, 2019.
[4] The clobal commitment 2020 progress report[R/OL]. Cowes: Ellen MacArthur Foundtion & UN Environment Programme, 2020.
[5] BARROWCLOUGH D, DEERE Birkbeck C. Transforming the global plastics economy: the political economy and governance of plastics production and pollution[R/OL]. Oxford: GEG Working Paper, 2020.
[6] 赵国樑. 我国废旧纺织品综合再利用技术现状及展望[J]. 北京服装学院学报 (自然科学版), 2019, 39(1): 95-100.
ZHAO Guoliang. Current situation and prospect of comprehensive recycling technology of waste textiles in China[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2019, 39(1): 95-100.
[7] BUKHARI M A, CARRASCO-GALLEGO R, PONCE-CUETO E. Developing a national programme for textiles and clothing recovery[J]. Waste Management & Research, 2018, 36(4): 321-331.
[8] HAHLADAKIS J N, VELIS C A, WEBER R, et al. An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling[J]. J Hazard Mater, 2018, 344: 179-199.
doi: 10.1016/j.jhazmat.2017.10.014
[9] SANDIN G, PETERS G M. Environmental impact of textile reuse and recycling: a review[J]. Journal of Cleaner Production, 2018, 184: 353-365.
doi: 10.1016/j.jclepro.2018.02.266
[10] HAMAD K, KASEEM M, DERI F. Recycling of waste from polymer materials: an overview of the recent works[J]. Polymer Degradation and Stability, 2013, 98(12): 2801-2812.
doi: 10.1016/j.polymdegradstab.2013.09.025
[11] PENSUPA N, LEU S Y, HU Y, et al. Recent trends in sustainable textile waste recycling methods: current situation and future prospects[J]. Chemistry and Chemical Technologies in Waste Valorization, 2017, 375(5): 189-228.
[12] 陈烨, 王少博, 柯福佑, 等. 废旧聚酯纤维制品资源再生循环技术发展[J]. 纺织科学研究, 2019, 8: 64-66.
CHEN Ye, WANG Shaobo, KE Fuyou, et al. Development of recycling technology of waste polyester fiber products[J]. Textile Science Research, 2019, 8:64-66.
[13] ELANDER M, LJUNGKVIST H. Critical aspects in design for fiber-to-fiber recycling of textiles[R/OL]. Stockholm: Mistra Future Fashion. 2016.
[14] 张帆, 杨术莉, 杜平凡. 废旧纺织品回收再利用综述[J]. 现代纺织技术, 2015, 23(6): 56-62.
ZHANG Fan, YANG Shuli, DU Pingfan. Review on recycling and reusing of waste textiles[J]. Advanced Textile Technology, 2015, 23(6): 56-62.
[15] LEAL Filho W, ELLAMS D, HAN S, et al. A review of the socio-economic advantages of textile recycling[J/OL]. Journal of Cleaner Production, 2019, 218: 10-20.
doi: 10.1016/j.jclepro.2019.01.210
[16] We make fashion sustainable[R/OL]. Genève, Re:newcell, 2017.
[17] PERIYASAMY A P, MILITKY J. Sustainability in regenerated textile fibers[M]//Sustainability in the Textile and Apparel Industries. Springer, 2020: 63-95.
[18] Lenzing unveils REFIBRATM breakthrough technology strengthening their commitment to the circular economy in textiles[R/OL]. [2019-3-12]. .
[19] 王萨丽. 废旧棉纺织品的溶解再生及应用拓展[D]. 上海: 东华大学, 2021:41.
WANG Sali. Dissolution and regeneration of waste cotton textiles and its application[D]. Shanghai: Donghua University, 2021:41.
[20] 王婕, 李国栋, 梁宝仁, 等. 废旧纺织品回收再利用的现状及研究进展[J]. 齐鲁工业大学学报, 2020, 34(5):16-24.
WANG Jie, LI Guodong, LIANG Baoren, et al. Present situation and research progress of waste textiles recycling and reuse[J]. Journal of Qilu University of Technology, 2020, 34(5):16-24.
[21] 董正. 源头绿色创新驱动行业变革:赛得利FINEX纤生代-(TM)启动仪式盛大举办[J]. 中国纺织, 2020(Z4):139.
DONG Zheng. Source of green innovation drive industry change:sateri FINEX fiber generation born-(TM) launching ceremony held a grand[J]. China Texitles, 2020(Z4):139.
[22] PIRJO Heikkilä T K, EETTA Saarimäki, JUKKA Pesola, et al. Recycled cotton fibres in technical and clothing applications[R]. Finland: VTT Technical Research Centre of Finland, 2019.
[23] H&M Conscious Exclusive becomes the first retail collection to feature Circulose®[R/OL]. (2020-1-13). .
[24] 唐山三友和Re:newcell联合推出新型粘胶短纤维 50%的原料来自回收纺织品[R/OL].(2019-10-16). .
Tangshan sanyou and RE: newcell jointly launch new viscose staple fiber with 50% raw material from recycled textiles[R/OL].(2019-10-16). .
[25] ASAADI S, HUMMEL M, AHVENAINEN P, et al. Structural analysis of ioncell-F fibres from birch wood[J]. Carbohydrate Polymers, 2018, 181: 893-901.
doi: 10.1016/j.carbpol.2017.11.062
[26] MEISTER G, WECHSLER M. Biodegradation of N-methylmorpholine-N-oxide[J]. Biodegradation, 1998, 9(2): 91-102.
doi: 10.1023/A:1008264908921
[27] CUISSINAT C, NAVARD P. Swelling and dissolution of cellulose: part II: free floating cotton and wood fibres in NaOH-water-additives systems[J]. Macromolecular Symposia, 2006, 244(1): 19-30.
doi: 10.1002/masy.200651202
[28] CUISSINAT C, NAVARD P, HEINZE T. Swelling and dissolution of cellulose: part IV: free floating cotton and wood fibres in ionic liquids[J]. Carbohydrate Polymers, 2008, 72(4): 590-596.
doi: 10.1016/j.carbpol.2007.09.029
[29] REFIBRATM technology: right out revolutionary[R/OL]. [2019-3-12]. .
[30] BARTOLOME L, IMRAN M, CHO B G, et al. Recent developments in the chemical recycling of PET[M]. Rijeka: InTech, 2012.
[31] KOSLOSKI-OH S C, WOOD Z A, MANJARREZ Y, et al. Catalytic methods for chemical recycling or upcycling of commercial polymers[J]. Materials Horizons, 2021, 8(4): 1084-1129.
doi: 10.1039/D0MH01286F
[32] SINHA V, PATEL M R, PATEL J V. PET waste management by chemical recycling: a review[J]. Journal of Polymers and the Environment, 2010, 18(1): 8-25.
doi: 10.1007/s10924-008-0106-7
[33] AL-SABAGH A M, YEHIA F Z, ESHAQ G, et al. Greener routes for recycling of polyethylene terephthalate[J]. Egyptian Journal of Petroleum, 2016, 25(1): 53-64.
doi: 10.1016/j.ejpe.2015.03.001
[34] ISSAM A M. A new approach to obtain Kevlar-49 from PET waste bottles[J]. Research on Chemical Intermediates, 2014, 40(8): 3033-3044.
doi: 10.1007/s11164-013-1149-5
[35] NAKAO T, CHIKATSUNE T, NAKASHIMA M, et al. Method for recycling PET bottle: US 7462649B2[P]. 2008-12-9.
[36] ISHIHARA K, ISHIDA K, MIYAMOTO M, et al. Method for separating and recovering dimethyl terephthalate and ethylene glycol from polyester waste: US 6706843B1[P]. 2004-3-16.
[37] 余新健, 徐允武, 叶建荣, 等. 废旧聚酯纺织品化学法循环再生技术探讨[J]. 合成纤维工业, 2018, 41(4): 34-37.
YU Xinjian, XU Yunwu, YE Jianrong, et al. Discussion on recycling technology of waste polyester textile by chemical method[J]. China Synthetic Fiber Industry, 2018, 41(4): 34-37.
[38] 余新健, 叶建荣, 徐允武, 等. 废旧涤纶纺织品的化学解聚工艺[J]. 合成纤维, 2018, 47(6): 34-36.
YU Xinjina, YE Jianrong, XU Yunwu, et al. Chemical depolymerization of waste polyester textile[J]. Synthetic Fiber in China, 2018, 47(6): 34-36.
[39] ROTIMI E O O, TOPPLE C, HOPKINS J. Towards a conceptual framework of sustainable practices of post-consumer textile waste at garment end of lifecycle: a systematic literature review approach[J]. Sustainability, 2021, 13(5): 2965.
doi: 10.3390/su13052965
[40] JACQUEL N, FREYERMOUTH F, FENOUILLOT F, et al. Synthesis and properties of poly(butylene succinate): efficiency of different transesterification catalysts[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49(24): 5301-12.
doi: 10.1002/pola.25009
[41] LIU X, TIAN F, ZHAO X, et al. Multiple functional materials from crushing waste thermosetting resins[J]. Mater Horiz, 2021, 8(1): 234-43.
doi: 10.1039/D0MH01053G
[42] NI Y P, LI Q T, CHEN L, et al. Semi-aromatic copolyesters with high strength and fire safety via hydrogen bonds and π-π stacking[J]. Chemical Engineering Journal, 2019, 374:694-705.
doi: 10.1016/j.cej.2019.05.212
[43] 金开元, 詹伟东, 刘萍, 等. 有机无机杂化钛系催化剂的应用研究[J]. 石油化工技术与经济, 2021, 37(3):6.
JIN Kaiyuan, ZHAN Weidong, LIU Ping, et al. Application study of organic-inorganic hybrid Titanium catalyst[J]. Technology & Economics in Petrochemicals, 2021, 37(3):6.
[44] DI Serio M, TESSER R, FERRARA A, et al. Heterogeneous basic catalysts for the transesterification and the polycondensation reactions in PET production from DMT[J]. Journal of Molecular Catalysis A: Chemical, 2004, 212(1): 251-257.
doi: 10.1016/j.molcata.2003.10.032
[45] 朱永群. 金属化合物在酯交换和缩聚反应中的催化活性[J]. 合成纤维, 1981, 5 (10): 52-59.
ZHU Yongqun. Catalytic activity of metal compounds in transesterification and polycondensation[J]. Synthetic Fiber in China, 1981, 5 (10): 52-59.
[46] FLORES I, DEMARTEAU J, MÜLLER A J, et al. Screening of different organocatalysts for the sustainable synthesis of PET[J]. European Polymer Journal, 2018, 104: 170-176.
doi: 10.1016/j.eurpolymj.2018.04.040
[47] 孙芮. 含锑废水在上海的行业分布特征及分析[J]. 净水技术, 2020, 39(SI): 168-173.
SUN Rui. Industrial distribution characteristics and analysis of antimony containing wastewater in Shanghai[J]. Water Purification Technology, 2020, 39(S1): 168-173.
[48] 周梅, 赵瑞方, 朱银, 等. 纺织品中的重金属问题及检测标准[J]. 中国纤检, 2019, 532(12): 96-99.
ZHOU Mei, ZHAO Ruifang, ZHU Yin, et al. Problems and testing standards of heavy metals in textiles[J]. China Textile Inspection, 2019, 532(12): 96-99.
[49] 董冲冲, 蒋红, 俞昊, 等. 涤纶生命周期中重金属锑的来源解析及检测[J]. 纺织检测与标准, 2015(1): 25-30.
DONG Chongchong, JIANG Hong, YU Hao, et al. Source analysis and detection of heavy metal Antimony in polyester life cycle[J]. Textile Inspection & Standard, 2015(1):25-30.
[50] 孙宾, 王鸣义. 钛系催化剂在PET合成领域的应用进展及趋势:下[J]. 纺织导报, 2019(10): 45-47.
SUN Bin, WANG Mingyi. Technology and prospect of titanium-based catalysts in the synthesis and application of polyester:Ⅱ[J]. China Textile Leader, 2019(10): 45-47.
[51] 孙宾, 王鸣义. 钛系催化剂在聚酯合成领域的应用进展及趋势:上[J]. 纺织导报, 2019(9): 37-48.
SUN Bin, WANG Mingyi. Application and prospect of Titanium-based catalysts in the polyester synthesis:Ⅱ[J]. China Textile Leader, 2019(9): 37-48.
[52] 张大省. 钛系催化剂在聚对苯二甲酸乙二醇酯合成中的应用[J]. 纺织导报, 2020(1): 48-52.
ZHANG Dasheng. Application of titanium catalyst in the synthesis of polyethylene terephthalate[J]. China Textile Leader, 2020(1): 48-52.
[1] 薛宝霞, 史依然, 张凤, 秦瑞红, 牛梅. 无卤氧化铁改性涤纶阻燃织物的制备及其性能[J]. 纺织学报, 2022, 43(05): 130-135.
[2] 崔玉莲, 刘红. 纺织品洗涤过程中纤维微塑料的形成因素分析[J]. 纺织学报, 2022, 43(05): 195-201.
[3] 王成成, 龚筱丹, 王振, 马群旺, 张丽平, 付少海. 高灵敏温感变色微胶囊的制备及其在智能纺织品上的应用[J]. 纺织学报, 2022, 43(05): 38-42.
[4] 樊威, 刘红霞, 陆琳琳, 窦皓, 孙艳丽. 废旧天然纤维纺织品回收利用现状及高值化利用策略[J]. 纺织学报, 2022, 43(05): 49-56.
[5] 乔燕莎, 毛迎, 徐丹瑶, 李彦, 李绍杰, 王璐, 唐健雄. 用于应对疝修补术后并发症的经编补片研究进展[J]. 纺织学报, 2022, 43(03): 1-7.
[6] 李田华, 李晶晶, 张克勤, 赵荟菁, 孟凯. 螺旋型人工血管内的血流动力学数值模拟[J]. 纺织学报, 2022, 43(03): 17-23.
[7] 成悦, 胡颖捷, 付译鋆, 李大伟, 张伟. 抗菌止血非织造弹性绷带的制备及其性能[J]. 纺织学报, 2022, 43(03): 31-37.
[8] 方镁淇, 王茜, 李彦, 李超婧, 黎昊, 王璐. 女性压力性尿失禁吊带的设计及其体外力学性能评价[J]. 纺织学报, 2022, 43(03): 38-43.
[9] 吴洋, 刘方恬, 曹孟杰, 崔金海, 邓红兵. 生物质纤维医用敷料研究进展[J]. 纺织学报, 2022, 43(03): 8-16.
[10] 李加双, 张丽平, 付少海. 双稳态电致变色离子凝胶的制备及其在织物上的应用[J]. 纺织学报, 2022, 43(02): 24-29.
[11] 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73.
[12] 徐英俊, 王芳, 倪延朋, 陈琳, 宋飞, 王玉忠. 纺织品的阻燃及多功能化研究进展[J]. 纺织学报, 2022, 43(02): 1-9.
[13] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[14] 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(01): 1-8.
[15] 董爽, 孔昱萤, 关晋平, 程献伟, 陈国强. 废旧涤纶/棉混纺军训服的化学分离回收[J]. 纺织学报, 2022, 43(01): 178-185.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!