纺织学报 ›› 2022, Vol. 43 ›› Issue (05): 49-56.doi: 10.13475/j.fzxb.20220103408

• 特约专栏:第十一届中国纺织学术年会专家观点 • 上一篇    下一篇

废旧天然纤维纺织品回收利用现状及高值化利用策略

樊威1,2(), 刘红霞1,2, 陆琳琳1,2, 窦皓1,2, 孙艳丽1,2   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.西安工程大学 功能性纺织材料及制品教育部重点实验室, 陕西 西安 710048
  • 收稿日期:2022-01-14 修回日期:2022-02-17 出版日期:2022-05-15 发布日期:2022-05-30
  • 作者简介:樊威(1986—),男,教授,博士。主要研究方向为三维纺织复合材料结构与性能、智能纤维与智能可穿戴、废旧纺织品回收利用及安全与防护用纺织品。E-mail: fanwei@xpu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52073224);中国纺织工业联合会应用基础研究项目(J202110);陕西省创新能力支撑计划项目(2020PT-043);西安市科技局先进制造业技术攻关项目(21XJZZ0019)

Progress in recycling waste natural fiber textiles and high-value utilization strategy

FAN Wei1,2(), LIU Hongxia1,2, LU Linlin1,2, DOU Hao1,2, SUN Yanli1,2   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2022-01-14 Revised:2022-02-17 Published:2022-05-15 Online:2022-05-30

摘要:

为了提高天然纤维废旧纺织品的回收利用率,减少环境污染和资源浪费;综述了天然纤维废旧纺织品的物理法、化学法、生物法和能量法等4种回收利用方法,阐述了各种方法的研究现状,并分析了其适合回收的纺织品类型和等级。研究认为:废旧纺织品材料组分复杂,再生产品结构与性能之间关系不明确、回收成本高、附加值低、接受程度差;指出未来应从废旧纺织品分拣识别技术、再生产品的构效关系、低成本回收技术、高值化策略和推广使用政策法规方面进行重点突破,以期推动天然纤维废旧纺织品的产业化步伐。

关键词: 废旧纺织品, 天然纤维, 循环再生技术, 高值化利用

Abstract:

In order to improve the recycling rate of waste natural fiber textiles and reduce environmental pollution and resource waste, the current recycling technologies of waste natural fiber textiles were reviewed from four perspectives,i.e. physical method, chemical method, biological method and energy method. The research progress and suitable types and grades of waste textiles for each method were analyzed. In view of the complex components of waste textiles, unclear structure-activity relationship, high recycling cost, low added value and poor consumer acceptance of recycling products, this review proposes to emphasize breakthroughs in sorting and identification technology of waste textiles, structure-activity relationship, low-cost recycling technology, high-value recycling strategy, policies and regulations on the promotion and use of recycling products in future studies, in order to promote the industrialization pace of waste natural fiber textiles.

Key words: waste textile, nature fiber, recycling technology, high-value recycling

中图分类号: 

  • TS102.6
[1] YOUSEF S, TATARIANTS M, TICHONOVAS M, et al. A new strategy for using textile waste as a sustainable source of recovered cotton[J]. Resources Conservation and Recycling, 2019, 145: 359-369.
doi: 10.1016/j.resconrec.2019.02.031
[2] TELLI A, BABAARSLAN O. Usage of recycled cotton and polyester fibers for sustainable staple yarn technology[J]. Tekstil Ve Konfeksiyon, 2017, 27(3): 224-233.
[3] HU Y Z, DU C Y, LEU S Y, et al. Valorisation of textile waste by fungal solid state fermentation: an example of circular waste-based biorefinery[J]. Resources Conservation and Recycling, 2018, 129: 27-35.
doi: 10.1016/j.resconrec.2017.09.024
[4] SANDIN G, PETERS G M. Environmental impact of textile reuse and recycling: a review[J]. Journal of Cleaner Production, 2018, 184: 353-365.
doi: 10.1016/j.jclepro.2018.02.266
[5] 杜欢政, 陆莎, 孙荐, 等. 生活源废旧纺织品高值化回收再利用体系的构建研究[J]. 纺织学报, 2021, 42(6): 1-7.
DU Huanzheng, LU Sha, SUN Jian, et al. Research on constructing high-value recycling systems for municipal textile wastes[J]. Journal of Textile Research, 2021, 42(6): 1-7.
doi: 10.1177/004051757204200101
[6] SILVA T L, CAZETTA A L, SOUZA P S C, et al. Mesoporous activated carbon fibers synthesized from denim fabric waste: efficient adsorbents for removal of textile dye from aqueous solutions[J]. Journal of Cleaner Production, 2018, 171: 482-490.
doi: 10.1016/j.jclepro.2017.10.034
[7] 汪少朋, 吴宝宅, 何洲. 废旧纺织品回收与资源化再生利用技术进展[J]. 纺织学报, 2021, 42(8): 34-40.
WANG Shaopeng, WU Baozhai, HE Zhou. Technology progress in recycling and reuse of waste textiles[J]. Journal of Textile Research, 2021, 42(8): 34-40.
[8] 史晟, 戴晋明, 牛梅, 等. 废旧纺织品的再利用[J]. 纺织学报, 2011, 32(11): 147-152.
SHI Sheng, DAI Jinming, NIU Mei, et al. Renewability of waste textile[J]. Journal of Textile Research, 2011, 32(11): 147-152.
[9] WANASSI B, AZZOUZ B, BEN H M. Value-added waste cotton yarn: optimization of recycling process and spinning of reclaimed fibers[J]. Industrial Crops and Products, 2016, 87: 27-32.
doi: 10.1016/j.indcrop.2016.04.020
[10] GRGAC S F, TARBUK A, DEKANIC T, et al. The chitosan implementation into cotton and polyester/cotton blend fabrics[J]. Materials, 2020, 13(7): 1616.
doi: 10.3390/ma13071616
[11] ESTEVE-TURRILLAS F A, DE L G M. Environmental impact of recover cotton in textile industry[J]. Resources, Conservation and Recycling, 2017, 116: 107-115.
doi: 10.1016/j.resconrec.2016.09.034
[12] PATNAIK A, MVUBU M, MUNIYASAMY S, et al. Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies[J]. Energy and Buildings, 2015, 92: 161-169.
doi: 10.1016/j.enbuild.2015.01.056
[13] ALI A, SHAKER K, NAWAB Y, et al. Hydrophobic treatment of natural fibers and their composites: a review[J]. Journal of Industrial Textiles, 2018, 47(8): 2153-2183.
doi: 10.1177/1528083716654468
[14] HAULE L V, CARR C M, RIGOUT M. Preparation and physical properties of regenerated cellulose fibres from cotton waste garments[J]. Journal of Cleaner Production, 2016, 112: 4445-4451.
doi: 10.1016/j.jclepro.2015.08.086
[15] MISHRA R, BEHERA B, MILITKY J. Recycling of textile waste into green composites: performance characterization[J]. Polymer Composites, 2014, 35(10): 1960-1967.
doi: 10.1002/pc.22855
[16] GOVINDARAJU R, JAGANNATHAN S. Optimization of mechanical properties of silk fiber-reinforced polypropylene composite using box-behnken experimental design[J]. Journal of Industrial Textiles, 2016, 47(5): 602-621.
doi: 10.1177/1528083716667257
[17] RANAKOTI L, RAKESH P K. Physio-mechanical characterization of tasar silk waste/jute fiber hybrid composite[J]. Composites Communications, 2020, 22: 100526.
doi: 10.1016/j.coco.2020.100526
[18] WEI B, XU F, AZHAR S W, et al. Fabrication and property of discarded denim fabric/polypropylene composites[J]. Journal of Industrial Textiles, 2014, 44(5), 798-812.
doi: 10.1177/1528083714550055
[19] FAN W, YUAN L J, D'SOUZA N, et al. Enhanced mechanical and radar absorbing properties of carbon/glass fiber hybrid composites with unique 3D orthogonal structure[J]. Polymer Testing, 2018, 69: 71-79.
doi: 10.1016/j.polymertesting.2018.05.007
[20] MENG X, FAN W, MAHARI W A W, et al. Production of three-dimensional fiber needle-punching composites from denim waste for utilization as furniture materials[J]. Journal of Cleaner Production, 2021, 281: 125321.
doi: 10.1016/j.jclepro.2020.125321
[21] LU L L, FAN W, MENG X, et al. Modal analysis of 3D needled waste cotton fiber/epoxy composites with experimental and numerical methods[J]. Textile Research Journal, 2020, 91(3/4): 358-372.
doi: 10.1177/0040517520944477
[22] LEE C K, CHO M S, KIM I H, et al. Preparation and physical properties of the biocomposite, cellulose diacetate/kenaf fiber sized with poly(vinyl alcohol)[J]. Macromolecular Research, 2010, 18(6): 566-570.
doi: 10.1007/s13233-010-0611-0
[23] XIONG R, ZHNG X X, TIAN D, et al. Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics[J]. Cellulose, 2012, 19(4): 1189-1198.
doi: 10.1007/s10570-012-9730-4
[24] KENNED J J, SANKARANARAYANASAMY K, KUMAR C S. Chemical, biological, and nanoclay treatments for natural plant fiber-reinforced polymer composites: a review[J]. Polymers and Polymer Composites, 2020, 29 (7): 1011-1038.
doi: 10.1177/0967391120942419
[25] OZTURK B, PARKINSON C, GONZALEZ-MIQUEL M. Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents[J]. Separation and Purification Technology, 2018, 206: 1-13.
doi: 10.1016/j.seppur.2018.05.052
[26] 谢妍妍, 柴云, 张普玉. 离子液体溶解纤维素的研究[J]. 化学通报, 2020, 9: 1104-1112.
XIE Yanyan, CHAI Yun, ZHANG Puyu. Study on dissolving cellulose by ionic liquids[J]. Chemistry, 2020, 9: 1104-1112.
[27] WILKES J S. A short history of ionic liquids-from molten salts to neoteric solvents[J]. Green Chemistry, 2002, 4(2): 73-80.
doi: 10.1039/b110838g
[28] CAI J, ZHANG L N, ZHOU J P, et al. Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties[J]. Advanced Materials, 2007, 19(6): 821-825.
doi: 10.1002/adma.200601521
[29] AGATE S, TYAGI P, NAITHANI V, et al. Innovating generation of nanocellulose from industrial hemp by dual asymmetric centrifugation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(4): 1850-1858.
[30] AHUJA D, KAUSHIK A, SINGH M. Simultaneous extraction of lignin and cellulose nanofibrils from waste jute bags using one pot pre-treatment[J]. International Journal of Biological Macromolecules, 2018, 107: 1294-1301.
doi: 10.1016/j.ijbiomac.2017.09.107
[31] PACAPHOL K, AHT-ONG D. Preparation of hemp nanofibers from agricultural waste by mechanical defibrillation in water[J]. Journal of Cleaner Production, 2017, 142: 1283-1295.
doi: 10.1016/j.jclepro.2016.09.008
[32] TUERXUN D, PULINGAM T, NORDIN N I, et al. Synthesis, characterization and cytotoxicity studies of nanocrystalline cellulose from the production waste of rubber-wood and kenaf-bast fibers[J]. European Polymer Journal, 2019, 116: 352-360.
doi: 10.1016/j.eurpolymj.2019.04.021
[33] ABRAHAM R E, WONG C S, PURI M. Enrichment of cellulosic waste hemp (cannabis sativa) hurd into non-toxic microfibres[J]. Materials, 2016, 9(7): 562.
doi: 10.3390/ma9070562
[34] 张勇, 鄢勇气. 苎麻化学成分的药用价值及其提取方法[J]. 化学研究, 2021, 5: 536-540.
ZHANG Yong, YAN Yongqi. Medicinal value and extraction methods of chemical constituents from ramie[J]. Chemical Research, 2021, 5: 536-540.
[35] HALIS E U, HICRAN D, FIGEN S. Recycling of cellulose from vegetable fiber waste for sustainable industrial applications[J]. Journal of Industrial Textiles, 2019, 70(1), 37-41.
[36] BAHETI V, MISHRA R, MILITKY J, et al. Influence of noncellulosic contents on nano scale refinement of waste jute fibers for reinforcement in polylactic acid films[J]. Fibers and Polymers, 2014, 15(7): 1500-1506.
doi: 10.1007/s12221-014-1500-5
[37] SPARKES J, HOLLAND C. The rheological properties of native sericin[J]. Acta Biomaterialia, 2018, 69: 234-242.
doi: 10.1016/j.actbio.2018.01.021
[38] CHEN S Y, LIU M Y, HUANG H M, et al. Mechanical properties of bombyx mori silkworm silk fibre and its corresponding silk fibroin filament: a comparative study[J]. Materials & Design, 2019, 181: 108077.
[39] 张昕, 潘志娟. 废旧蚕丝的回收利用现状分析[J]. 丝绸, 2019(6): 25-30.
ZHANG Xin, PAN Zhijuan. Analysis on recycling situation of waste silk[J]. Journal of Silk, 2019(6): 25-30.
[40] ZOU S, WANG X, FAN S, et al. Electrospun regenerated Antheraea pernyi silk fibroin scaffolds with improved pore size, mechanical properties and cytocompatibility using mesh collectors[J]. Journal of Materials Chemistry B, 2021, 9 (27): 5514-5527.
doi: 10.1039/D1TB00944C
[41] 陈小菊, 沈嘉丽, 张佩华. 疝修补片用再生丝素蛋白纳米纤维膜的制备与性能探讨[J]. 国际纺织导报, 2021, 49(11):12-15.
CHEN Xiaoju, SHEN Jiali, ZHANG Peihua. Preparation and properties of regenerated silk fibroin nanofiber membrane for hernia patch[J]. Melliand China, 2021, 49(11):12-15.
[42] QIANG M A, BO Y B, HHL A, et al. Preparation and properties of photochromic regenerated silk fibroin/Tungsten trioxide nanoparticles hybrid fibers[J]. Composites Communications, 2021, 27: 100848.
doi: 10.1016/j.coco.2021.100848
[43] YAMAUCHI K, KHODA A. Novel proteinous microcapsules from wool keratins[J]. Colloids and Surfaces B: Biointerface, 1997, 9: 117-119.
[44] FEROZ S, MUHAMMAD N, RATNAYAKE J, et al. Keratin-based materials for biomedical applications[J]. Bioactive Materials, 2020, 5(3): 496-509.
doi: 10.1016/j.bioactmat.2020.04.007
[45] WANG B, YANG W, MCKITTRICK J, et al. Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration[J]. Progress in Materials Science, 2016, 76: 229-318.
doi: 10.1016/j.pmatsci.2015.06.001
[46] HOLKAR C R, JAIN S S, JADHAV A J, et al. Valorization of keratin based waste[J]. Process Safety and Environmental Protection, 2018, 115: 85-98.
doi: 10.1016/j.psep.2017.08.045
[47] SHAVANDI A, SILVAIL T H, BEKHIT A A, et al. Keratin: dissolution, extraction and biomedical application[J]. Biomaterials Science, 2017, 5( 9): 1699-1735.
doi: 10.1039/C7BM00411G
[48] 胡杰, 宋玉奎, 柴玉叶, 等. 水性聚氨酯丙烯酸酯接枝角蛋白水凝胶的合成及性能[J]. 皮革科学与工程, 2015, 25(3):5.
HU Jie, SONG Yukui, CHAI Yuye, et al. Preparation and properties of aqueous gel via waterworn polyurethane acrylate grafting keratin[J]. Leather Science and Engingeering, 2015, 25(3):5.
[49] 孙丽莹, 高文伟, 李珊, 等. 角蛋白提取方法进展及提取技术应用选择建议[J]. 皮革科学与工程, 2020, 30(3):8.
SUN Liying, GAO Wenwei, LI Shan, et al. Progress in keratin extraction methods and suggestions on selection of extraction techniques for application[J]. Leather Science and Engingeering, 2020, 30(3):8.
[50] ZHU L L, SHEN D K, LUO K H. A critical review on VOCs adsorption by different porous materials: species, mechanisms and modification methods[J]. Journal of Hazardous Materials, 2020, 389: 122102.
doi: 10.1016/j.jhazmat.2020.122102
[51] MENDOZA-CASTILLO D I, REYNEL-AVILA H E, BONILLA-PETRICIOLET A, et al. Synthesis of denim waste-based adsorbents and their application in water defluoridation[J]. Journal of Molecular Liquids, 2016, 221: 469-478.
doi: 10.1016/j.molliq.2016.06.005
[52] 张旭, 柏广宇, 高宝昌, 等. 改性汉麻材料对水体中重金属离子吸附性能研究[J]. 化学工程师, 2021, 3: 39-41.
ZHANG Xu, BAI Guangyu, GAO Baochang, et al. Adsorption of heavy metal ions in water by modified hemp material[J]. Chemical Engineer, 2021, 3: 39-41.
[53] 胡玉洁, 巫拱生, 李青山. 改性罗布麻纤维的吸附功能研究[J]. 功能高分子学报, 2003, 4: 247-250.
HU Yujie, WU Gongsheng, LI Qingshan. Study on adsorption function of modified apocynum fiber[J]. Journal of Functional Polymers, 2003, 4: 247-250.
[54] GORE P M, NAEBE M, WANG X G, et al. Silk fibres exhibiting biodegradability & superhydrophobicity for recovery of petroleum oils from oily wastewater[J]. Journal of Hazardous Materials, 2020, 389: 121823.
doi: 10.1016/j.jhazmat.2019.121823
[55] MORIWAKI H, KITAJIMA S, KURASHIMA M, et al. Utilization of silkworm cocoon waste as a sorbent for the removal of oil from water[J]. Journal of Hazardous Materials, 2009, 165: 266-70.
doi: 10.1016/j.jhazmat.2008.09.116
[56] HYUNG-MIN Choi, MOREAU J P. Oil sorption behavior of various sorbents studied by sorption capacity measurement and environmental scanning electron microscopy[J]. Microscopy Research and Technique, 1993, 25: 447-455.
pmid: 8400439
[57] RADETIC M, RADOJEVIC D, ILIC V, et al. Recycled wool-based nonwoven material for decolorisation of dyehouse effluents[J]. International Journal of Clothing Science and Technology, 2009, 21: 109-116.
doi: 10.1108/09556220910933835
[58] DAKIKY M, KHAMIS M, MANASSRA A, et al. Selective adsorption of chromium (Vi) in industrial wastewater using low-cost abundantly available adsorbents[J]. Advances in Environmental Research, 2002, 6: 533-540.
doi: 10.1016/S1093-0191(01)00079-X
[59] DOU Y, LIU X, YU K, et al. Biomass porous carbon derived from jute fiber as anode materials for lithium-ion batteries[J]. Diamond and Related Materials, 2019, 98: 107514.
doi: 10.1016/j.diamond.2019.107514
[60] REMADEVI R, AL FARUQUE M A, ZHANG J Z, et al. Electrically conductive honeycomb structured graphene composites from natural protein fibre waste[J]. Materials Letters, 2020, 264: 127311.
doi: 10.1016/j.matlet.2020.127311
[61] CATALDI P, CONDURACHE O, SPIRITO D, et al. Keratin-graphene nanocomposite: transformation of waste wool in electronic devices[J]. ACS Sustainable Chemistry & Engineering, 2019(7): 12544-12551.
[62] BHATTI H N, HANIF M A, QASIM M, et al. Biodiesel production from waste tallow[J]. Fuel, 2008, 87: 2961-2966.
doi: 10.1016/j.fuel.2008.04.016
[63] NIGAM P S, SINGH A. Production of liquid biofuels from renewable resources[J]. Progress in Energy and Combustion Science, 2011, 37(1): 52-68.
doi: 10.1016/j.pecs.2010.01.003
[64] SARKAR N, GHOSH S K, BANNERJEE S, et al. Bioethanol production from agricultural wastes: an overview[J]. Renewable Energy, 2012, 37(1): 19-27.
doi: 10.1016/j.renene.2011.06.045
[65] GHOLAMZAD E, KERIMI K, MASOOMI M. Effective conversion of waste polyester-cotton textile to ethanol and recovery of polyester by alkaline pretreatment[J]. Chemical Engineering Journal, 2014, 253: 40-45.
doi: 10.1016/j.cej.2014.04.109
[66] ISMAIL Z Z, TALIB A R. Recycled medical cotton industry waste as a source of biogas recovery[J]. Journal of Cleaner Production, 2016, 112: 4413-4418.
doi: 10.1016/j.jclepro.2015.06.069
[67] KABIR M M, FORGACS G, HORVATH I S. Enhanced methane production from wool textile residues by thermal and enzymatic pretreatment[J]. Process Biochemistry, 2013, 48(4): 575-580.
doi: 10.1016/j.procbio.2013.02.029
[68] KIM D K, KIM K B, KIM Y H, et al. Recycled silk wastes as feed ingredient for poultry[J]. Fiber, 2002, 58, 106-110.
doi: 10.2115/fiber.58.106
[69] GORECKI R S, GORECKI M T. Utilization of waste wool as substrate amendment in pot cultivation of tomato, sweet pepper, and eggplant[J]. Polish Journal of Environmental Studies, 2010, 19(5): 1083-1087.
[70] NUNES L J R, GODINA R, MATIAS J C O, et al. Economic and environmental benefits of using textile waste for the production of thermal energy[J]. Journal of Cleaner Production, 2018, 171: 1353-1360.
doi: 10.1016/j.jclepro.2017.10.154
[71] NASRI-NASRABADI B, WANG X, BYRNE N, et al. Perpetual colour: accessing the colourfastness of regenerated cellulose fibres from coloured cotton waste[J]. Journal of The Textile Institute, 2020, 111(12):1-10.
doi: 10.1080/00405000.2019.1626611
[72] 樊威, 刘红霞, 苗亚萍, 等.基于废旧纺织品的彩色再生纤维素导电长丝的制备方法:202110908027.0[P]. 2021-10-26.
FAN Wei, LIU Hongxia, MIAO Yaping, et al. Preparation method of color regenerated cellulose conductive filament based on wasting textile:202110908027.0[P].2021-10-26.
[1] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[2] 董爽, 孔昱萤, 关晋平, 程献伟, 陈国强. 废旧涤纶/棉混纺军训服的化学分离回收[J]. 纺织学报, 2022, 43(01): 178-185.
[3] 杨星, 李轻舟, 吴敏, 周永凯. 欧盟纺织产业链上的绿色循环及废旧纺织品处理关键问题[J]. 纺织学报, 2022, 43(01): 106-112.
[4] 韩非, 郎晨宏, 邱夷平. 废旧纺织品资源化循环利用研究进展[J]. 纺织学报, 2022, 43(01): 96-105.
[5] 高强, 王晓, 郭亚杰, 陈茹, 魏菊. 棉基Ti3C2Tx油水分离膜的制备及其性能[J]. 纺织学报, 2022, 43(01): 172-177.
[6] 汪少朋, 吴宝宅, 何洲. 废旧纺织品回收与资源化再生利用技术进展[J]. 纺织学报, 2021, 42(08): 34-40.
[7] 杜欢政, 陆莎, 孙荐, 康乾. 生活源废旧纺织品高值化回收再利用体系的构建研究[J]. 纺织学报, 2021, 42(06): 1-7.
[8] 涂莉, 孟家光, 李欣, 李娟子. 废旧毛/丝/棉混纺面料的组分分析及其剥色工艺[J]. 纺织学报, 2019, 40(11): 75-80.
[9] 刘春丽 陈慰来 梁佳琦. 废纺再生毡基材料的制备及其性能[J]. 纺织学报, 2018, 39(11): 56-60.
[10] 韦树琛 丁欣 李文霞 王华平 张朔. 废旧聚酯纤维制品近红外定量分析模型的建立及验证[J]. 纺织学报, 2018, 39(07): 63-68.
[11] 陈思 邱夷平 施楣梧 蒋秋冉. 用于天然纤维素纤维纱线的无浆料浆纱技术[J]. 纺织学报, 2016, 37(2): 85-91.
[12] 郑环达 郑来久. 超临界流体染整技术研究进展[J]. 纺织学报, 2015, 36(09): 141-148.
[13] 刘建平;高卫东. 服装用天然纤维材料的文化构成[J]. 纺织学报, 2007, 28(1): 99-101.
[14] 程隆棣. 细旦混纺纤维细度配比问题的研究[J]. 纺织学报, 1999, 20(06): 15-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!