纺织学报 ›› 2022, Vol. 43 ›› Issue (05): 57-62.doi: 10.13475/j.fzxb.20210500406
赵波波1, 王亮1(), 李敬毓2, 万刚3, 夏兆鹏1, 刘雍1
ZHAO Bobo1, WANG Liang1(), LI Jingyu2, WAN Gang3, XIA Zhaopeng1, LIU Yong1
摘要:
针对在制备酚醛纤维过程中醛类交联剂对人体及环境危害较大的问题,采用六次甲基四胺(HMTA)作为交联剂在盐酸溶液中制备酚醛纤维,探讨了交联浴配比、升温速率、交联浴温度以及热处理温度对纤维力学性能、耐热性能的影响。结果表明:与初生纤维相比,交联酚醛纤维的力学性能、热稳定性均得到了较大改善;在盐酸和HMTA质量比为1.2:1,交联浴以15 ℃/h的升温速率升至120 ℃后恒温1.5 h条件下制得预交联酚醛纤维,然后于200 ℃真空氛围下处理2 h,得到的交联酚醛纤维的断裂强度为3.63 cN/dtex,断裂伸长率为7.7%,初始分解温度高达386 ℃,氮气氛围下900 ℃处理1 h后质量保留率为60.7%。本文提出的以HMTA为交联剂制备酚醛纤维的方法对建立酚醛纤维的绿色环保生产工艺路线具有指导意义。
中图分类号:
[1] | ECONOMY J, CLARK R A. Fibers from novolacs: US 3650102A[P]. 1972-03-21. |
[2] | 王迎, 谢概, 刘勇. 静电纺丝法制备酚醛纤维研究进展[J]. 高分子通报, 2016(3): 1-5. |
WANG Ying, XIE Gai, LIU Yong. Development of phenolic fibers prepared by electrospinning[J]. China Polymer Bulletin, 2016(3): 1-5. | |
[3] |
MARLIANA M M, HASSAN A, YUZIAH M Y N, et al. Flame retardancy, thermal and mechanical properties of Kenaf fiber reinforced unsaturated polyester/phenolic composite[J]. Fibers and Polymers, 2016, 17(6): 902-909.
doi: 10.1007/s12221-016-5888-y |
[4] | 王慧娟, 卢建军, 连丹丹, 等. 酚醛基活性炭纤维的制备及改性研究进展[J]. 化工新型材料, 2020, 48(10): 236-240. |
WANG Huijuan, LU Jianjun, LIAN Dandan, et al. Research progress in preparation and modification of pacf[J]. New Chemical Materials, 2020, 48(10): 236-240. | |
[5] | 刘春玲, 郭全贵, 史景利, 等. 用固化反应法制备酚醛纤维[J]. 材料研究学报, 2005(1): 28-34. |
LIU Chunling, GUO Quangui, SHI Jingli, et al. The curing reaction of phenolic fibers[J]. Chinese Journal of Materials Research, 2005(1): 28-34. | |
[6] | 赵丽红, 史景利, 翟更太, 等. 腰果壳油改性酚醛纤维的制备及性能研究[J]. 合成纤维, 2008, 37(12): 1-4. |
ZHAO Lihong, SHI Jingli, ZHAI Gengtai, et al. Preparation and properties of cashew nut shell liquid modified phenolic fiber[J]. Synthetic Fiber in China, 2008, 37(12): 1-4. | |
[7] | 黄正宏, 王磊, 康飞宇. 一种超细酚醛纤维的制备方法:201110319111.5[P]. 2013-01-30. |
HUANG Zhenghong, WANG Lei, KANG Feiyu. A method for preparing superfine fiber: 201110319111.5[P]. 2013-01-30. | |
[8] |
ZHANG D, SHI J, GUO Q, et al. Preparation mechanism and characterization of a novel, regulable hollow phenolic fiber[J]. Journal of Applied Polymer Science, 2007, 104:2108-2112.
doi: 10.1002/app.25787 |
[9] | 焦明立, 杨凯, 刘红燕, 等. 酚醛纤维的制备及改性研究进展[J]. 合成纤维工业, 2013, 36(6): 33-36. |
JIAO Mingli, YANG Kai, LIU Hongyan, et al. Research progress in preparation and modification of phenolic fibers[J]. China Synthetic Fiber Industry, 2013, 36(6): 33-36. | |
[10] | 任蕊, 皇甫慧君, 王燕, 等. 酚醛纤维及其性能的研究[J]. 应用化工, 2013, 42(3): 539-542. |
REN Rui, HUANGPU Huijun, WANG Yan, et al. Research of phenolic fiber and its performance[J]. Applied Chemical Industry, 2013, 42(3): 539-542. | |
[11] |
KISKAN B, YAGCI Y. The journey of phenolics from the first spark to advanced materials[J]. Israel Journal of Chemistry, 2020, 60(1/2): 20-32.
doi: 10.1002/ijch.201900086 |
[12] | 郭金海, 齐鲁, 叶建忠, 等. 纤度和预氧化处理对酚醛纤维性能的影响[J]. 化工新型材料, 2010, 38(4): 74-76. |
GUO Jinhai, QI Lu, YE Jianzhong, et al. Effect of fineness and pre-oxidation treatment on characterization of phenolic fibers[J]. New Chemical Materials, 2010, 38(4): 74-76. | |
[13] | 杨桂林, 于俊荣, 王彦, 等. 熔融纺酚醛纤维快速交联固化工艺研究[J]. 合成纤维工业, 2019, 42(3): 1-5. |
YANG Guilin, YU Junrong, WANG Yan, et al. Study on rapid crosslinking and curing process of melt spun phenolic fibers[J]. China Synthetic Fiber Industry, 2019, 42(3): 1-5. | |
[14] |
MEDEIROS E S D, AGNELLI J A M, JOSEPH K, et al. Curing behavior of a novolac-type phenolic resin analyzed by differential scanning calorimetry[J]. Journal of Applied Polymer Science, 2003, 90(6): 1678-1682.
doi: 10.1002/app.12838 |
[15] |
CHEN B, YU J, ZHOU Y, et al. Preparation, structure and properties of boron modified high-ortho phenolic fibers[J]. Fibers and Polymers, 2016, 17(5): 678-686.
doi: 10.1007/s12221-016-5651-4 |
[16] | 云庆跃, 卢建军, 连丹丹, 等. 纳米Al2O3改性酚醛基碳纤维的制备及性能研究[J]. 应用化工, 2018, 47(12): 2666-2669. |
YUN Qingyue, LU Jianjun, LIAN Dandan, et al. Preparation and properties of nano-Al2O3 modified phenolic resin based carbon fibers[J]. Applied Chemical Industry, 2018, 47(12): 2666-2669. | |
[17] | 张东卿, 雷世文, 史景利, 等. 中空酚醛纤维的熔纺研究及性能表征[J]. 材料工程, 2007(S1): 172-178. |
ZHANG Dongqing, LEI Shiwen, SHI Jingli, et al. Melt-spinning and characterization of hollow phenolic fibers[J]. Journal of Materials Engineering, 2007(S1): 172-178. | |
[18] |
JIAO M, YANG K, DIAO Q, et al. Effect of monophenyl borate on properties of high-ortho phenolic fibers[J]. Fibers and Polymers, 2017, 18(5): 875-881.
doi: 10.1007/s12221-017-6972-7 |
[19] | 刘春玲, 郭全贵, 史景利, 等. 酚醛纤维交联程度对炭纤维结构和性能的影响[J]. 材料研究学报, 2006(3): 245-249. |
LIU Chunling, GUO Quangui, SHI Jingli, et al. Effect of crosslinking of phenolic fibers on the structure and performance of carbon fibers[J]. Chinese Journal of Materials Research, 2006(3): 245-249. |
[1] | 邵灵达, 黄锦波, 金肖克, 田伟, 祝成炎. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(04): 68-73. |
[2] | 方镁淇, 王茜, 李彦, 李超婧, 黎昊, 王璐. 女性压力性尿失禁吊带的设计及其体外力学性能评价[J]. 纺织学报, 2022, 43(03): 38-43. |
[3] | 谷元慧, 周红涛, 张典堂, 刘景艳, 王曙东. 碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制[J]. 纺织学报, 2022, 43(03): 95-102. |
[4] | 陈咏, 乌婧, 王朝生, 潘小虎, 李乃祥, 戴钧明, 王华平. 生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(02): 37-43. |
[5] | 闵小豹, 潘志娟. 生物质纤维/菠萝叶纤维多组分混纺纱线的品质与性能[J]. 纺织学报, 2022, 43(01): 74-79. |
[6] | 王松立, 王美林, 周湘, 刘遵峰. 人造蜘蛛丝与仿蜘蛛丝纤维的研究进展[J]. 纺织学报, 2021, 42(12): 174-179. |
[7] | 宋雪旸, 张岩, 徐成功, 王萍, 阮芳涛. 碳纤维/聚丙烯/聚乳酸增强复合材料的力学性能[J]. 纺织学报, 2021, 42(11): 84-88. |
[8] | 周濛濛, 蒋高明, 高哲, 郑培晓. 纬编衬经衬纬管状织物增强复合材料研究进展[J]. 纺织学报, 2021, 42(07): 184-191. |
[9] | 陆振乾, 杨雅茹, 荀勇. 纤维对水泥基复合材料性能影响研究进展[J]. 纺织学报, 2021, 42(04): 177-183. |
[10] | 左亚君, 蔡赟, 王蕾, 高卫东. 纯棉纱线合股数对织物性能的影响[J]. 纺织学报, 2021, 42(04): 74-79. |
[11] | 黄笛, 李芳, 李刚. 涤纶/蚕丝机织心脏瓣膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 74-79. |
[12] | 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112. |
[13] | 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180. |
[14] | 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66. |
[15] | 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77. |
|