纺织学报 ›› 2022, Vol. 43 ›› Issue (06): 127-132.doi: 10.13475/j.fzxb.20210906906
WANG Zongqian1(), CHENG Lüzhu1, JIN Xianhua2, XIA Liping2
摘要:
为寻求更高效地测试纺织品中氯菊酯含量的方法,利用驱蚊整理剂以及浸轧工艺制备了不同质量浓度氯菊酯整理的纯棉织物,采用扫描电子显微镜、带积分球的紫外可见分光光谱仪、常规气相色谱仪对其微观形貌、光谱特征及氯菊酯负载量进行分析对比,并进一步对比测试耗时、样品需求量以及测试成本等指标。结果表明:氯菊酯整理纯棉织物在280 nm处出现强吸收,对应氯菊酯分子的紫外特征吸收,且吸光度值与织物中的氯菊酯负载量成正比,同时与气相色谱测试的棉织物中氯菊酯含量具有较好的拟合关系。紫外光谱法与气相色谱法测试结果的相对误差率和变异值相当,但紫外光谱法具有测试效率高,成本低的明显优势。
中图分类号:
[1] |
TVRKOGLU G, SARIISIK M, ERKAN G, et al. Micro- and nano-encapsulation of limonene and permethrin for mosquito repellent finishing of cotton textiles[J]. Iranian Polymer Journal, 2020, 29: 321-329.
doi: 10.1007/s13726-020-00799-4 |
[2] |
RICHARDS S L, AGADA N, BALANAY J A G, et al. Permethrin treated clothing to protect outdoor workers: evaluation of different methods for mosquito exposure against populations with differing resistance status[J]. Pathogens and Global Health, 2018, 112(1): 13-21.
doi: 10.1080/20477724.2018.1437692 |
[3] |
BONADIES I, LONGO A, ANDROSCH R, et al. Biodegradable electrospun PLLA fibers containing the mosquito-repellent DEET[J]. European Polymer Journal, 2019, 113: 377-384.
doi: 10.1016/j.eurpolymj.2019.02.001 |
[4] |
HALBKAT L, LUAN K, CAVE G, et al. Fabric infused with a botanical repellent for protection against mosquitoes[J]. The Journal of The Textile Institute, 2019, 110(10): 1468-1474.
doi: 10.1080/00405000.2019.1603576 |
[5] |
ANUAR A A, YUSOF N. Methods of imparting mosquito repellent agents and the assessing mosquito repellency on textile[J]. Fashion and Textiles, 2016, 3(1): 1-14.
doi: 10.1186/s40691-015-0053-6 |
[6] |
BANKS S D R, ORSBORNE J, GEZAN S A, et al. Permethrin-treated clothing as protection against the dengue vector, Aedes aegypti: extent and duration of protection[J]. Plos Negl Trop Dis, 2015, 9(10): e0004109.
doi: 10.1371/journal.pntd.0004109 |
[7] |
MARTINS T G, CHIAPETTA S C, CASSELLA R J. Extraction of permethrin from impregnated fabrics for determination by ultra-high performance liquid chromatography with diode array detection[J]. Journal of Environmental Science and Health, Part B, 2021: 56(5): 483-489.
doi: 10.1080/03601234.2021.1913014 |
[8] | ATTALLAH E R, HAMDY ABDELWAHED M, ABO-ALY M M. Development and validation of multi-residue method for determination of 412 pesticide residues in cotton fiber using GC-MS/MS and LC-MS/MS[J]. Journal of the Textile Institute, 2018:1-18. |
[9] | 张宪胜, 王然, 王锐, 等. 基于锥形量热仪的纤维集合体燃烧性能测试方法[J]. 纺织学报, 2017, 38(2): 47-52. |
ZHANG Xiansheng, WANG Ran, WANG Rui, et al. Testing method of combustion behavior of loose fibrousassembly by cone calorimeter[J]. Journal of Textile Research, 2017, 38(2): 47-52. | |
[10] | 管丽媛, 王钟, 祁宁, 等. 基于近红外光谱技术的亚麻纤维化学成分含量快速测定[J]. 分析测试学报, 2020, 39(6): 795-799. |
GUAN Liyuan, WANG Zhong, QI Ning, et al. Rapid determination of chemical composition of flax fiber by near infrared spectroscopy[J]. Journal of Instrumental Analysis, 2020, 39(6): 795-799. | |
[11] | WANG Z, YANG H, XING J, et al. Robust color fastness of dyed silk fibroin film by coupling modification dyeing with aniline diazonium Salt[J]. Journal of Polymer Materials, 2019, 36(2):147-157. |
[12] |
WANG Z, FANG Y, LI J. Enhanced UV photo-stabilization of tyrosine with benzotriazole structure formed through chemical modification[J]. Journal of the Chemical society of Pakistan, 2019, 41 (5), 750-757.
doi: 10.52568/000800/JCSP/41.05.2019 |
[13] |
WANG Z, LI C, ZHANG H, et al. 1-Aminoanthraquinone diazonium salt on the coupling modification dyeing of silk fibroin with enhanced color fastness[J]. Fibers and Polymers, 2018, 19 (10), 2134-2138.
doi: 10.1007/s12221-018-1101-9 |
[14] | WANG D, WANG Z, ZHANG X, et al. Activated carbon fiber derived from the seed hair fibers of metaplexis japonica: novel efficient adsorbent for methylene blue[J]. Industrial Crops & Products, 2020, 148: 112319. |
[15] |
NISSEN M, DOHERTY B, HAMPERL J, et al. UV absorption spectroscopy in water-filled antiresonant hollow core fibers for pharmaceutical detection[J]. Sensors, 2018, 18(2): 478.
doi: 10.3390/s18020478 |
[16] |
MABROUK MM, EL-MAGHRABY WH, EL-MALLA SF. UV spectrophotometric methods for quantitative determination of masitinib; extraction of qualitative information[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 2021, 248: 119175.
doi: 10.1016/j.saa.2020.119175 |
[17] |
MADEJ K, SEKIEWICZ A, KALENIK T K, et al. Cloud-point extraction followed by high pressure liquid chromatography with UV spectrophotometric detection for determination of permethrin in urine samples[J]. Analytical Methods, 2015, 7(18): 7758-7764.
doi: 10.1039/C5AY01396H |
[18] |
ZHANG Y, ZHANG G, LI Y, et al. Probing the binding of insecticide permethrin to calf thymus DNA by spectroscopic techniques merging with chemometrics method[J]. Journal of Agricultural and Food Chemistry, 2013, 61(11): 2638-2647.
doi: 10.1021/jf400017f |
[19] |
TIAN J, RUSTUM A. Development and validation of a fast static headspace GC method for determination of residual solvents in permethrin[J]. Journal of Pharmaceutical and Biomedical Analysis, 2016, 128: 408-415.
doi: 10.1016/j.jpba.2016.06.020 |
[20] |
DONG Y, WANG P, GAN L, et al. Enhanced removal of aqueous Cr (VI) using optimized Fe complex on EDTA modified cotton fiber via photocatalytic reduction and adsorption hybrid functions[J]. Cellulose, 2019, 26(12): 7383-7397.
doi: 10.1007/s10570-019-02598-4 |
[21] |
WANG P, DONG Y, LI B, et al. A sustainable and cost effective surface functionalization of cotton fabric using TiO2 hydrosol produced in a pilot scale: condition optimization, sunlight-driven photocatalytic activity and practical applications[J]. Industrial Crops and Products, 2018, 123: 197-207.
doi: 10.1016/j.indcrop.2018.06.067 |
[22] |
GARCLA E, GARCLA A, BARBAS C. Validated HPLC method for quantifying permethrin in pharmaceutical formulations[J]. Journal of Pharmaceutical and Biomedical Analysis, 2001, 24(5/6): 999-1004.
doi: 10.1016/S0731-7085(00)00544-6 |
[23] |
ARAYNE M S, SULTANA N, HUASAIN F. Validated RP-HPLC method for determination of permethrin in bulk and topical preparations using UV-vis detector[J]. Journal of Chromatographic Science, 2011, 49(4): 287-291.
doi: 10.1093/chrsci/49.4.287 |
[24] | 张月, 王蕾, 刘建立, 等. 织物折皱回复角测试方法比较[J]. 纺织学报, 2015, 36(1): 60-63, 71. |
ZHANG Yue, WANG Lei, LIU Jianli, et al. Comparison of test methods for fabric wrinkle recovery angle[J]. Journal of Textile Research, 2015, 36(1): 60-63, 71. |
[1] | 铁建成, 刘俊, 贾丽霞, 藏蒙蒙, 孙慧芹, 朱鹏. 采用超声辅助-固相萃取气相色谱串联质谱法测定废棉中的增塑剂[J]. 纺织学报, 2021, 42(05): 130-137. |
[2] | 于岩, 章若红, 钟毅, 杜英英, 毛志平, 徐红. 用气相色谱-质谱法测定纺织柔软剂中的环硅氧烷[J]. 纺织学报, 2020, 41(08): 69-73. |
[3] | 于昕辰, 陈红, 方艳萍, 丁雪梅. 纺织品卷烟味去除效果的评价方法[J]. 纺织学报, 2020, 41(02): 77-82. |
[4] | 杨书会 王瑞. 纯棉织物折皱回复角与其组织结构参数的关系[J]. 纺织学报, 2017, 38(04): 46-49. |
[5] | 宋玉 吴敏 计丽虹 王平. 紫外光固化聚氨酯膜的制备及其在棉织物涂层整理中的应用[J]. 纺织学报, 2014, 35(6): 89-0. |
[6] | 李淳 邱思聪 任忠海 梁文杰 余林 曹维强 林家奎. 蚕丝制品中辛基酚和壬基酚残留量的气相色谱-质谱法测定[J]. 纺织学报, 2014, 35(5): 91-0. |
[7] | 牛春娥 熊琳 杨博辉 郭天芬 李维红 王宏博 杜天庆. 基于气相色谱法的含脂羊毛中4种拟除虫菊酯药物残留测定[J]. 纺织学报, 2013, 34(5): 1-6. |
[8] | 韩超 沈浩 李舟 刘鸿鹏 周强 沈燕 . 气相色谱-质谱法测定纺织品中17种酚类化合物[J]. 纺织学报, 2012, 33(11): 91-96. |
[9] | 王晓宁;王昊;廖青. 基于HS-GC-MS的棉织物鱼腥味检测[J]. 纺织学报, 2011, 32(2): 68-72. |
[10] | 孙忠松;王境堂;高永刚;蔡发. 基于气相色谱-离子阱法的纺织品及皮革中的富马酸二甲酯检测[J]. 纺织学报, 2010, 31(2): 73-76. |
[11] | 周民革;侯爱琴. 上淀粉浆纯棉织物中果胶含量的测定方法[J]. 纺织学报, 2010, 31(10): 60-65. |
[12] | 沈丽;戴瑾瑾;陈全伦. 氟碳化合物等离子体处理对纯棉织物表面性质的影响[J]. 纺织学报, 2009, 30(12): 71-75. |
[13] | 徐英莲;黄龙全;傅雅琴;郑东伟. 棉织物基光催化功能材料制备工艺[J]. 纺织学报, 2008, 29(7): 69-72. |
[14] | 董永春;李春辉;张宝华. 偶氮染料光助还原脱色反应机理的研究[J]. 纺织学报, 2006, 27(2): 5-8. |
[15] | 陆必泰;朱义. 纺织品避蚊保健整理剂的研制及应用工艺[J]. 纺织学报, 2006, 27(2): 92-94. |
|