纺织学报 ›› 2022, Vol. 43 ›› Issue (06): 140-144.doi: 10.13475/j.fzxb.20210605205

• 服装工程 • 上一篇    下一篇

运动时关节部位皮肤形变量预测方法

张亚琦1, 李小辉1,2()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
  • 收稿日期:2021-06-21 修回日期:2022-03-23 出版日期:2022-06-15 发布日期:2022-07-15
  • 通讯作者: 李小辉
  • 作者简介:张亚琦(1997—),女,硕士生。主要研究方向为服装舒适性与功能服装。
  • 基金资助:
    中央高校基本科研业务费专项资金项目(2232021G-08)

Prediction method of human skin deformation variables for joint position during exercise

ZHANG Yaqi1, LI Xiaohui1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2021-06-21 Revised:2022-03-23 Published:2022-06-15 Online:2022-07-15
  • Contact: LI Xiaohui

摘要:

针对皮肤形变量测量方法存在的工作量大、操作复杂等普遍问题,通过人体体型与关节部位运动时皮肤形变量的关系,并结合数学原理构建人体主要关节的几何模型,分别得到肩关节、肘关节、髋关节和膝关节皮肤形变量的计算公式,然后与现有的测量方法进行对比实验。研究结果表明:皮肤形变量主要取决于关节的围度、活动角度以及身体质量指数;各个关节皮肤形变量计算结果与实际测量结果的平均误差为0.51 cm,在0.05显著水平上无明显差异,从而说明该方法可以用于皮肤形变量的预测,能够为服装结构设计提供参考。

关键词: 服装, 人体测量, 关节运动, 皮肤形变量, 数学建模

Abstract:

Aiming at the common problems of large workload and complex operation in the measurement method of skin shape variables, the geometric models of main joints of human body are constructed through based on the relationship between human body shape and skin shape variables during joint movement. Mathematical principles were used and calculation equations of skin shape variables of shoulder joint, elbow joint, hip joint and knee joint were established respectively, and they were compared with theresults from using the existing measurement methods. The results show that the skin shape variables mainly depends on the joint circumference, movement angle and body mass index. The average error between the calculated results of skin shape variables of each joint and the actual measurement results is 0.51 cm, and there is no significant difference at the significant level of 0.05, which shows that this method can be used to predict skin shape variables and provide reference for garment structurale design.

Key words: apparel, body measurement, joint movement, skin deformation, mathematical modeling

中图分类号: 

  • TS941.17

图1

人体膝关节弯曲运动模拟"

表1

6位受试者的BMI及主要关节围度数据"

受试者
编号
BMI 各关节围度/cm
Ck Ch Ce Cs
M1 19.9 33.5 48.3 22.6 25.1
M2 20.0 37.2 50.7 25.4 30.0
M3 21.4 40.7 55.5 26.3 31.4
M4 25.5 42.0 57.2 28.1 33.0
M5 22.8 39.0 54.1 27.0 32.2
M6 22.4 38.7 55.0 26.0 32.0

表2

6位受试者主要关节运动皮肤形变量直接测量数据"

受试者
编号
膝关节皮肤形变量/cm 髋关节皮肤形变量/cm 肘关节皮肤形变量/cm 肩关节皮肤形变量/cm
45° 90° 135° 45° 90° 135° 45° 90° 135° 45° 90° 135°
M1 2.4 5.0 7.8 3.3 7.0 11.3 2.0 3.6 6.1 3.0 6.2 10.8
M2 3.1 6.5 9.0 4.4 8.2 13.0 2.5 4.0 6.5 3.4 7.8 11.8
M3 3.7 7.0 10.0 5.0 10.7 15.0 3.0 5.5 7.7 4.0 8.6 13.4
M4 3.5 7.7 11.0 5.6 9.7 15.0 2.6 5.0 8.0 4.0 8.0 13.5
M5 3.3 7.3 10.5 5.0 9.0 14.3 2.5 5.4 8.0 4.8 8.8 13.3
M6 3.4 6.8 10.0 4.4 10.0 16.0 3.0 5.0 7.2 4.0 9.6 12.4

表3

6位受试者主要关节运动皮肤形变量数学获取数据"

受试者
编号
膝关节皮肤形变量/cm 髋关节皮肤形变量/cm 肘关节皮肤形变量/cm 肩关节皮肤形变量/cm
45° 90° 135° 45° 90° 135° 45° 90° 135° 45° 90° 135°
M1 2.8 5.6 8.4 3.8 7.7 11.6 1.9 3.8 5.7 3.1 6.3 9.4
M2 3.1 6.3 9.4 4.1 8.1 12.3 2.1 4.2 6.4 3.7 7.6 11.4
M3 3.6 7.2 10.8 4.7 9.4 14.1 2.3 4.7 7.0 4.1 8.2 12.3
M4 4.2 8.4 12.6 5.5 11.0 16.5 2.8 5.6 8.4 4.8 9.6 14.4
M5 3.6 7.2 10.8 4.8 9.6 14.4 2.5 5.0 7.5 4.4 8.8 13.2
M6 3.5 7.0 10.6 4.8 9.6 14.5 2.3 4.7 7.1 4.3 8.6 12.9

表4

SPSS系统误差统计分析表"

关节 样本容量 极小值 极大值 均值 标准差 方差
膝关节 18 0.04 1.60 0.456 7 0.374 48 0.140
髋关节 18 0.08 1.50 0.625 6 0.480 22 0.231
肘关节 18 0.01 0.80 0.375 0 0.246 27 0.061
肩关节 18 0.05 1.60 0.565 6 0.447 68 0.200
[1] 程慧婕, 王燕珍. 人体皮肤拉伸测量在服装设计领域应用的研究进展[J]. 毛纺科技, 2020, 48(4): 90-97.
CHENG Huijie, WANG Yanzhen. Advances in the application of human skin tension measurement in field of clothing design[J]. Wool Textile Journal, 2020, 48(4): 90-97.
[2] 张文斌, 方方. 服装人体工效学[M]. 上海: 东华大学出版社, 2015: 3-19.
ZHANG Wenbin, FANG Fang. Apparel somatology[M]. Shanghai: Donghua University Press, 2015: 3-19.
[3] 冯洋, 王永进. 基于足球运动的男子下肢体表皮肤形变的研究[J]. 北京服装学院学报(自然科学版), 2017, 37(2): 25-32.
FENG Yang, WANG Yongjin. Study on skin deformation of man's lower limb during football[J]. Journal of Beijing Institute of Fashion Technology(Natural Science Edition), 2017, 37(2): 25-32.
[4] 李秀青, 刘需, 赵欲晓. 骑行运动中男子下肢体表尺寸变化规律[J]. 纺织学报, 2017, 38(8): 120-126.
LI Xiuqing, LIU Xu, ZHAO Yuxiao. Study on size changes of man's lower limb body in riding motion[J]. Journal of Textile Research, 2017, 38(8): 120-126.
[5] 施琦, 孙玉钗, 居琴燕. 基于腰脊关节运动的人体皮肤形变研究[J]. 现代丝绸科学与技术, 2020, 35(1): 23-27.
SHI Qi, SUN Yuchai, JU Qinyan. Study of human skin deformation based on lumbar spine joint movement[J]. Modern Silk Science & Technology, 2020, 35(1): 23-27.
[6] 范雅雯, 刘咏梅. 人体膝关节周围皮肤形变测量研究[J]. 浙江纺织服装职业技术学院学报, 2018, 17(2): 29-33.
FAN Yawen, LIU Yongmei. Research of skin deformation measurement around the knee joint[J]. Journal of Zhejiang Fashion Institute of Technology, 2018, 17(2): 29-33.
[7] 王永进. 动态人体尺寸的测量方法[J]. 纺织学报, 2013, 34(4): 104-110.
WANG Yongjin. Study of body anthropometrical method in motion state[J]. Journal of Textile Research, 2013, 34(4): 104-110.
[8] CHOI J, HONG K. 3D skin length deformation of lower body during knee joint flexion for the practical application of functional sportswear[J]. Applied Ergonomics, 2015, 48:186-201.
doi: 10.1016/j.apergo.2014.11.016
[9] 张星, 周江. 服装造型空间特征与人体运动的适应性[J]. 天津工业大学学报, 2002(5): 49-52.
ZHANG Xing, ZHOU Jiang. Space character of clothing shape and sporting adaptability of human body[J]. Journal of Tiangong University, 2002(5): 49-52.
[10] 戢敏. 基于人机工程的动态人体模型研究和应用[D]. 成都: 四川大学, 2004: 1-39.
JI Min. Research and application of dynamic human phantom based on ergonomics[D]. Chengdu: Sichuan University, 2004: 1-39.
[11] HAN H, NAM Y. Automatic body landmark identification for various body figures[J]. International Journal of Industrial Ergonomics, 2011, 41(6): 592-606.
doi: 10.1016/j.ergon.2011.07.002
[12] 吴小, 马利庄, 顾宝军. 计算机动画中人体建模与皮肤变形技术的研究现状与展望[J]. 中国图象图形学报, 2007, 12(4): 565-573.
WU Xiaomao, MA Lizhuang, GU Baojun. State of the art of the research on human-body modeling and skin deformation in computer animation[J]. Journal of Image and Graphics, 2007, 12(4): 565-573.
[13] 张琳. 立体几何教学中综合法与向量法的比较研究[D]. 北京: 首都师范大学, 2009: 1-45.
ZHANG Lin. A comparative study of comprehensive method and vector method in the teaching of solid geometry[D]. Beijing: Capital Normal University, 2009: 1-45.
[14] 何叶松, 李莉, 单晶心, 等. 立体三维膝关节模型的创建[J]. 中国医科大学学报, 2008(5): 617-619.
HE Yesong, LI Li, SHAN Jingxin, et al. Establishment of the stereoscopic three-dimensional knee joint model[J]. Journal of China Medical University, 2008(5): 617-619.
[15] 郑庆玉. 参数估计与检验中样本容量的确定[J]. 临沂师范学院学报, 2001(6): 3-4.
ZHENG Qingyu. The establishment of sample content in parameter's test and estimate[J]. Journal of Linyi University, 2001(6): 3-4.
[1] 杨晓波. 基于交互式遗传算法的三维服装款式研究[J]. 纺织学报, 2022, 43(06): 145-150.
[2] 陈清婷, 杜劲松, 林镶, 朱建龙. 面向服装供应链平台的订单生产双向推荐策略[J]. 纺织学报, 2022, 43(06): 151-156.
[3] 宁俊, 师佳. 北京居民的服装绿色消费情感与行为实证研究[J]. 纺织学报, 2022, 43(06): 157-164.
[4] 马亮, 李俊. 多种智能技术在防寒服装功能研发中的应用进展[J]. 纺织学报, 2022, 43(06): 206-214.
[5] 张健, 徐凯忆, 赵崧灵, 顾冰菲. 基于二维照片的青年男性颈肩部形态分类与识别[J]. 纺织学报, 2022, 43(05): 143-149.
[6] 潘佳豪, 周其洪, 岑均豪, 李姝佳, 周申华. 服装企业包装订单分配排序优化模型及其快速非支配遗传算法求解[J]. 纺织学报, 2022, 43(05): 156-162.
[7] 戴雨仟, 刘晓刚. 服装色彩感知价值对品牌忠诚的影响[J]. 纺织学报, 2022, 43(04): 147-152.
[8] 余玉坤, 孙玥, 侯珏, 刘正, 易洁伦. 单层服装间隙量的动态有限元模型构建与仿真[J]. 纺织学报, 2022, 43(04): 124-132.
[9] 郑路, 颜伟雄, 胡觉亮, 韩曙光. 基于模块化的服装混合流水线平衡优化[J]. 纺织学报, 2022, 43(04): 140-146.
[10] 雷鸽, 李小辉. 数字化服装结构设计技术的研究进展[J]. 纺织学报, 2022, 43(04): 203-209.
[11] 王春茹, 袁月, 曹晓梦, 范依琳, 钟安华. 立领结构参数对服装造型的影响[J]. 纺织学报, 2022, 43(03): 153-159.
[12] 刘汉邦, 李新荣, 冯文倩, 吴柳波, 袁汝旺. 面向服装面料的柯恩达效应式非接触夹持器吸附性能[J]. 纺织学报, 2022, 43(02): 208-213.
[13] 蒋高明, 周濛濛, 郑宝平, 郑培晓, 刘海桑. 绿色低碳针织技术研究进展[J]. 纺织学报, 2022, 43(01): 67-73.
[14] 邵鹏, 张媛媛. 绿色消费政策体系及对服装绿色消费的启示[J]. 纺织学报, 2022, 43(01): 208-215.
[15] 侯一鸣, 鲁成. 服装企业环保主张对消费者购买意愿的影响[J]. 纺织学报, 2022, 43(01): 201-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!