纺织学报 ›› 2022, Vol. 43 ›› Issue (06): 180-186.doi: 10.13475/j.fzxb.20210104707

• 综合述评 • 上一篇    下一篇

耐热聚乳酸材料的研究进展

刘彦麟1, 顾伟文1, 魏建斐1,2,3, 王文庆1, 王锐1,2,3()   

  1. 1.北京服装学院 材料设计与工程学院, 北京 100029
    2.北京服装学院 服装材料研究开发与评价北京市重点实验室, 北京 100029
    3.北京服装学院 北京市纺织纳米纤维工程技术研究中心, 北京 100029
  • 收稿日期:2021-01-20 修回日期:2021-05-28 出版日期:2022-06-15 发布日期:2022-07-15
  • 通讯作者: 王锐
  • 作者简介:刘彦麟(1994—),女,硕士。主要研究方向为耐热阻燃聚乳酸及其纤维材料的制备及性能。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309002);北京学者项目(RCQJ20303)

Research progress and status quo of heat-resistant polylactic acid materials

LIU Yanlin1, GU Weiwen1, WEI Jianfei1,2,3, WANG Wenqing1, WANG Rui1,2,3()   

  1. 1. School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029, China
    3. Beijing Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2021-01-20 Revised:2021-05-28 Published:2022-06-15 Online:2022-07-15
  • Contact: WANG Rui

摘要:

针对工业化生产聚乳酸产品普遍存在力学强度低、韧性差、结晶速度缓慢、结晶度低、耐热性能差等问题,综述了国内外关于提高聚乳酸材料耐热性能的方法及其改性机制,将其总结分为共混改性、链结构改性和结晶改性,其中:共混改性包括聚合物复合改性和填充改性,链结构改性包括共聚改性和交联改性,结晶改性包括添加成核剂改性和加工工艺改性。简要分析了各改性方法的优缺点,重点介绍并讨论了聚乳酸立构复合晶的形成及其影响因素,并对聚乳酸材料的发展方向和前景进行了分析与展望。指出国内外最受青睐的改性方法是通过结晶改性配合加工工艺条件改性进行调控,更高效地改善聚乳酸材料的耐热性能。

关键词: 聚乳酸, 立构晶, 耐热性能, 共混改性, 链结构改性, 结晶改性

Abstract:

Aiming at the low mechanical strength, poor toughness, slow crystallization speed, low crystallinity, and poor heat resistance of polylactic acid products, modification methods and mechanisms for improving the heat resistance of polylactic acid materials were reviewed. The review was concentrated on blending modification involving polymer composite modification and filling modification, chain structure modification encompassing copolymerization modification and crosslinking modification, and crystal modification including additive nucleating agent modification and processing technology modification. The advantages and disadvantages of each modification method were briefly analyzed, and the formation of polylactic acid stereo complex crystals and its influencing factors were introduced and discussed in detail. The development direction and prospect of polylactic acid materials were analyzed and prospected. The rereview revealed that the most popular modification method is to adjust and control the heat resistance of polylactic acid materials through crystal modification and modification of processing conditions.

Key words: polylactic acid, stereo complex, heat-resistant property, blending modification, chain structure modification, crystal modification

中图分类号: 

  • TS151

表1

PLA晶型及参数"

晶型 晶系 晶体类别 a/nm b/nm c/nm α/(°) β/(°) γ/(°) 螺旋构象 熔点/℃
α 正交 HC 1.05 0.61 2.88 90 90 90 103 180
α' 假正交 HC 1.06 0.61 2.88 90 90 90 103
β 三方 HC 1.052 1.052 0.88 90 90 90 31 175
γ 正交 HC 0.995 0.625 0.88 90 90 90 31
SC 三斜 SC 0.916 0.916 0.87 109.2 109.2 109.8 31 225
SC 三斜 SC 0.912 0.913 0.93 110 110 109 31 225
SC 三方 SC 1.498 1.498 0.87 90 90 120 31和32 225
SC 三方 SC 1.500 1.50 0.823 90 90 120 31和32 225

图1

SC-PLA的晶体结构"

图2

PLLA/PDLA 复合物在升温过程中发生重结晶形成SC立构晶的机制示意图"

[1] 曹齐茗, 孟鑫, 公维光, 等. 聚乳酸生物质成核剂研究进展[J]. 中国塑料, 2020, 34(6):110-117.
doi: 10.19491/j.issn.1001-9278.2020.06.017
CAO Qiming, MENG Xin, GONG Weiguang, et al. Research of biomass nucleating agents for polylactic acid[J]. China Plastics, 2020, 34(6):110-117.
doi: 10.19491/j.issn.1001-9278.2020.06.017
[2] 丁跃, 卢波, 季君晖. 聚乳酸基生物可降解材料的相容性[J]. 化学进展, 2020, 32:738-751.
doi: 10.7536/PC190930
DING Yue, LU Bo, JI Junhui. Compatibilization strategies of PLA-based biodegradable materials[J]. Progress in Chemistry, 2020, 32:738-751.
[3] 尹园园. 纳米纤维素的改性及其聚乳酸复合材料的性能研究[D]. 无锡: 江南大学, 2018:6-7.
YIN Yuanyuan. Modification of nanocellulose and the properties of poly(lactic acid) composites[D]. Wuxi: Jiangnan University, 2018:6-7.
[4] 丁晓庆, 王新龙. 高热变形温度聚乳酸的研究进展[J]. 现代塑料加工应用, 2018, 30(5):56-58.
DING Xiaoqing, WANG Xinlong. Research progress on PLA with high heat deflection temperature[J]. Modern Plastics Processing and Applications, 2018, 30(5):56-58.
[5] 赵雨晗, 董丽莉, 陈蕾, 等. 聚乳酸/植物纤维复合材料的研究进展[J]. 化工时刊, 2018, 32(8):39-42.
ZHAO Yuhan, DONG Lili, CHEN Lei, et al. Research development of PLA/Plant fiber composite[J]. Chemical Industry Times, 2018, 32(8):39-42.
[6] 潘晓, 钱明球, 戴钧明. 聚乳酸纤维的国内外开发进展[J]. 合成技术及应用, 2017, 32(4):32-37.
PAN Xiao, QIAN Mingqiu, DAI Junming. Development of poly (lactic acid) fibers at home and abroad[J]. Synthetic Technology & Application, 2017, 32(4):32-37.
[7] 王惠娟, 杨丽娟. 聚乳酸复合材料的研究进展[J]. 合成树脂及塑料, 2017, 34(6):88-92.
WANG Huijuan, YANG Lijuan. Research progress of PLA composites[J]. China Synthetic Resin and Plastics, 2017, 34(6):88-92.
[8] 张琳. 聚乳酸纤维的研发状况及应用[J]. 人造纤维, 2015, 45(5):27-31.
ZHANG Lin. Development and application of polylactic acid fiber[J]. Artificial Fibre, 2015, 45(5):27-31.
[9] 齐悦, 杨博, 马慧玲, 等. 生物可降解聚乳酸纤维的发展现状及其改性研究[J]. 北京服装学院学报(自然科学版), 2019, 39(1):85-93.
QI Yue, YANG Bo, MA Huiling, et al. Development and modification of polylactic acid fibers[J]. Journal of Beijing Institute of Fashion Technology(Natural Science Edition), 2019, 39(1):85-93.
[10] 梁宁宁, 熊祖江, 王锐, 等. 聚乳酸纤维的制备及性能研究进展[J]. 合成纤维工业, 2016, 39(1):42-47.
LIANG Ningning, XIONG Zujiang, WANG Rui, et al. Research progress in preparation and properties of poly(lactic acid) fiber[J]. China Synthetic Fiber Industry, 2016, 39(1):42-47.
[11] 王璇, 杨鹏, 周琳翔, 等. 改性纳米纤维素对聚乳酸热降解动力学行为影响研究[J]. 功能材料, 2019, 50(10):10127-10132,10139.
WANG Xuan, YANG Peng, ZHOU Linxiang, et al. The effect of modified cellulose nanowhisker on thermal degradation kinetics of poly(lactic acid)[J]. Journal of Functional Materials, 2019, 50(10):10127-10132,10139.
[12] 陈杰, 胡荣荣, 刘环宇, 等. 聚乳酸耐热改性研究进展[J]. 塑料科技, 2018, 46(5):115-119.
CHEN Jie, HU Rongrong, LIU Huanyu, et al. Research progress on heat resistance modification of poly (lactic acid)[J]. Plastics Science and Technology, 2018, 46(5):115-119.
[13] HE Shiwen, BAI Hongwei, BAI Dongyu, et al. A promising strategy for fabricating high-performance stereocomplex-type polylactide products via carbon nanotubes-assisted low-temperature sintering[J]. Polymer, 2019, 162:50-57.
doi: 10.1016/j.polymer.2018.12.032
[14] PAN P, BAO J, HAN L, et al. Stereocomplexation of highmolecular-weight enantiomeric poly(lactic acid)s enhanced by miscible polymer blending with hydrogenbond interactions[J]. Polymer, 2016, 98:80-87.
doi: 10.1016/j.polymer.2016.06.014
[15] DENG L, XU C, DING S, et al. Processing a supertoughened polylactide ternary blend with high heat deflection temperature by melt blending with a high screw rotation speed[J]. Industrial & Engineering Chemistry Research, 2019, 58:10618-10628.
doi: 10.1021/acs.iecr.9b01970
[16] QU Z, HU X, PAN X, et al. Effect of compatibilizer and nucleation agent on the properties of poly(lactic acid)/polycarbonate (PLA/PC) blends[J]. Polymer Science,Series A, 2018, 60(4):499-506.
doi: 10.1134/S0965545X18040107
[17] HAO X, KASCHTA J, LIU X, et al. Entanglement network formed in miscible PLA/PMMA blends and its role in rheological and thermo-mechanical properties of the blends[J]. Polymer, 2015, 80:38-45.
doi: 10.1016/j.polymer.2015.10.037
[18] BEHERA K, CHANG Y H, YADAV M, et al. Enhanced thermal stability,toughness,and electrical conductivity of carbon nanotube-reinforced biodegradable poly(lactic acid)/poly(ethylene oxide) blend-based nanocomposites[J]. Polymer, 2020, 186:122002.
doi: 10.1016/j.polymer.2019.122002
[19] XU H, WU D, YANG X, et al. Thermostable and impermeable "nano-barrier walls" constructed by poly(lactic acid) stereocomplex crystal decorated graphene oxide nanosheets[J]. Macromolecules, 2015, 48(7):2127-2137.
doi: 10.1021/ma502603j
[20] PIEKARSKA K, SOWINSKI P, PIORKOWSKA E, et al. Structure and properties of hybrid PLA nanocomposites with inorganicnanofillers and cellulose fibers[J]. Composites Part A:Applied Science and Manufacturing, 2016, 82:34-41.
doi: 10.1016/j.compositesa.2015.11.019
[21] 李晓露, 王锐, 杨春芳, 等. 含柔性链段聚右旋乳酸嵌段共聚物对聚左旋乳酸拉伸行为的影响[J]. 高分子学报, 2018, 49(5):598-606.
LI Xiaolu, WANG Rui, YANG Chunfang, et al. Effect of poly(D-lactic acid) block copolymers with soft chains on the tensile behavior of poly(L-lactic acid)[J]. Acta Polymerica Sinica, 2018, 49(5):598-606.
[22] 肖薇. 聚乳酸立构共混及共聚复合体的结晶行为研究[D]. 西安: 西安工业大学, 2018:8-9.
XIAO Wei. The crystallization behaviour of stereocomplex poly(lactide) in blend and co-polymer[D]. Xi'an: Xi'an Technological University, 2018:8-9.
[23] TSUJI H. Poly(lactic acid) stereocomplexes:a decade of progress[J]. Advanced Drug Delivery Reviews, 2016, 107:97-135.
doi: 10.1016/j.addr.2016.04.017
[24] DENG Shihao, BAI Hongwei, LIU Zhenwei, et al. Toward supertough and heat-resistant stereocomplex-type polylactide/elastomer blends with impressive melt stability via in situ formation of graft copolymer during one-pot reactive melt blending[J]. Macromolecules, 2019, 52(4): 1718-1730.
doi: 10.1021/acs.macromol.8b02626
[25] QI Fei, TANG Mengqing, CHEN Xiaoliang, et al. Morphological structure,thermal and mechanical properties of tough poly(lactic acid) upon stereocomplexes[J]. European Polymer, 2015, 71:314-324.
doi: 10.1016/j.eurpolymj.2015.08.008
[26] TESFAYE M, PATWA R, DHAR P, et al. Nanosilk-grafted poly(lactic acid) films:influence of cross-linking on rheology and thermal stability[J]. ACS Omega, 2017, 2(10):7071-7084.
doi: 10.1021/acsomega.7b01005
[27] HAO Yanping, YANG Huli, PAN Hongwei, et al. Heat resistant and mechanical properties of biodegradable poly(lactic acid)/poly(butylene succinate) blends crosslinked by polyaryl polymethylene isocyanate[J]. Polymer Plastics Technology and Engineering, 2018. DOI: 10.1080/03602559.2018.1447123.
doi: 10.1080/03602559.2018.1447123
[28] LIU M, YUAN Y, FAN Z, et al. The effects of gamma-irradiation on the structure,thermal resistance and mechanical properties of the PLA/EVOH blends[J]. Nuclear Instruments & Methods in Physics Researh, 2012, 274(1):139-144.
[29] BAI Hongwei, LIU Huili, BAI Dongyu, et al. Enhancing the melt stability of polylactide stereocomplexes using a solid-state cross-linking strategy during a melt-blending process[J]. Polym Chem, 2014, 5:5985-5993.
doi: 10.1039/C4PY00700J
[30] HACHANA N, WONGWANCHAI T, CHAOCHANCHAIKUL K, et al. Influence of crosslinking agent and chain extender on properties of gamma-irradiated PLA[J]. Journal of Polymers and the Environment, 2016, 25(2):323-333.
doi: 10.1007/s10924-016-0812-5
[31] 王赞. Zn(Ⅱ)对聚乳酸结晶和热性能的影响[D]. 合肥: 中国科学技术大学, 2020:10-12.
WANG Zan. Impact of Zn(Ⅱ)ions on crystallization and thermal properties of PLA[D]. Hefei: University of Science and Technology of China, 2020:10-12.
[32] 熊祖江. 聚乳酸立构复合物结晶结构调控和性能研究[D]. 北京: 中国科学院大学, 2013:2-10.
XIONG Zujiang. In partial fulfillment of the requirement[D]. Beijing: University of Chinese Academy of Sciences, 2013:2-10.
[33] TABI T. The application of the synergistic effect between the crystal structure of poly(lactic acid) (PLA) and the presence of ethylene vinyl acetate copolymer (EVA) to produce highly ductile PLA/EVA blends[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138: 1287-1297.
doi: 10.1007/s10973-019-08184-x
[34] GUPTA A, SIMMONS W, SCHUENEMAN G T, et al. Lignin-coated cellulose nanocrystals as promising nucleating agent for poly(lactic acid)[J]. Journal of Thermal Analysis and Calorimetry, 2016, 126(3):1243-1251.
doi: 10.1007/s10973-016-5657-6
[35] BOONLUKSIRI Y, PRAPAGDEE B, SOMBATSOMPOP N. Narongrit sombatsompop.effect of poly(D-lactic acid) and cooling temperature on heat resistance and antibacterial performance of stereocomplex poly(L-lactic acid)[J]. Journal of Applied Polymer Science, 2020, 137,48970.
doi: 10.1002/app.48970
[36] ZHAO Caixia, YU Miaomiao, FAN Qicheng, et al. The role of cold crystallization of homochiral crystallites in thesuperb heat resistant poly(lactic acid)[J]. Polymers for Advanced Technologies, 2020, 31(5):1-11.
doi: 10.1002/pat.4661
[37] LUO Chunyan, YANG Minrui, XIAO Wei, et al. Relationship between the crystallization behavior of PEG and stereocomplex crystallization of PLLA/PDLA[J]. Polymer International, 2018, 67(3):313-321.
doi: 10.1002/pi.5506
[38] LI Yuzeng, LI Qiao, YANG Gesheng, et al. Evaluation of thermal resistance and mechanical properties of injected molded stereocomplex of poly(L-lactic acid) and poly(D-lactic acid) with various molecular weights[J]. Adv Polym Technol, 2018, 37(6):1674-1681.
doi: 10.1002/adv.21824
[39] BAI Hongwei, DENG Shihao, BAI Dongyu, et al. Recent advances in processing of stereocomplex-type poly-lactide[J]. Macromol Rapid Commun, 2017, 38(23): 1700454.
doi: 10.1002/marc.201700454
[40] REFAA Z, BOUTAOUS M, XIN S, et al. Synergistic effects of shear flow and nucleating agents on the crystallization mechanisms of poly (lactic acid)[J]. Journal of Polymer Research, 2017, 24(2):1-3.
doi: 10.1007/s10965-016-1163-6
[41] YU C, HAN L, BAO J, et al. Polymorphic crystallization and crystalline reorganization of poly(L-lactic acid)/poly(D-lactic acid) racemic mixture influenced by blending with poly(vinylidene fluoride)[J]. The Journal of Physical Chemistry B, 2016, 120(32):8046-8054.
doi: 10.1021/acs.jpcb.6b06387
[42] BAI H, DENG S, BAI D, et al. Recent advances in processing of stereocomplex-type polylactide[J]. Macromolecular Rapid Communications, 2017, 38(23): 1700454.
doi: 10.1002/marc.201700454
[43] ALIOTTA L, CINELLI P, COLTELLI M.B, et al. Effect of nucleating agents on crystallinity and properties of poly (lactic acid) (PLA)[J]. European Polymer Journal, 2017, 93:822-832.
doi: 10.1016/j.eurpolymj.2017.04.041
[44] 许鹏飞, 潘宏伟, 张会良, 等. 聚乳酸共混增韧和耐热性能的研究[J]. 塑料科技, 2020, 5:54-59.
XU Pengfei, PAN Hongwei, ZHANG Huiliang, et al. Research on toughening and heat resistance of polylactide blends[J]. Plastics Science and Technology, 2020, 5:54-59.
[45] ZHANG X, MENG L, LI G, et al. Effect of nucleating agents on the crystallization behavior and heat resistance of poly(l-lactide)[J]. Journal of Applied Polymer Science, 2015, 133(8):42999.
[46] YU Chengtao, HAN Lili, BAO Jianna, et al. Polymorphic crystallization and crystalline reorganization of poly(Llactic acid)/poly(Dlactic acid) racemic mixture influenced by blending with poly(vinylidene fluoride)[J]. J Phys Chem B, 2016, 120:8046-8054.
doi: 10.1021/acs.jpcb.6b06387
[47] LIU Huli, ZHOU Wei, CHEN Pengfei, et al. A novel aryl hydrazide nucleator to effectively promote stereocomplex crystallization in high-molecular-weight poly(L-lactide)/poly (D-lactide) blends[J]. Polymer, 2020, 210:122873.
doi: 10.1016/j.polymer.2020.122873
[48] 郝艳平, 李义, 刘志刚, 等. 成核剂TMP-6对PLLA/PDLA共混物结构与性能的影响[J]. 塑料科技, 2019, 47(2):53-56.
HAO Yanping, LI Yi, LIU Zhigang, et al. Effects of neacleating agent TMP-6 on the structure and properties of PLLA/PDLA blends[J]. Plastics Science and Technology, 2019, 47(2):53-56.
[49] BUBECK R, MERRINGTON A, DUMITRASCU A, et al. Thermal analyses of poly(lactic acid) PLA and micro-ground paper blends[J]. Journal of Thermal Analysis and Calorimetry, 2017, 131(1):309-316.
doi: 10.1007/s10973-017-6466-2
[50] 应泽人. 聚乳酸/纤维素纳米纤维复合材料的结构与性能[D]. 扬州: 扬州大学, 2019:64-77.
YING Zeren. Structure and properties of poly(lactic acid)/cellulose nanofiber composites[D]. Yangzhou: Yangzhou University, 2019:64-77.
[51] ZHANG H, BAI H, DENG S, et al. Achieving all-polylactide fibers with significantly enhanced heat resistance and tensile strength via in situ formation of nanofibrilized stereocomplex polylactide[J]. Polymer, 2019, 166:13-20.
doi: 10.1016/j.polymer.2019.01.040
[52] 宋莹楠, 雷军, 李忠明. 压力场下流动诱导聚乳酸立构复合晶(SC)结晶行为研究[C]// 2017全国高分子学术论文报告会摘要集. 成都: 中国化学会, 2017:34.
SONG Yingnan, LEI Jun, LI Zhongming. Study on the crystallization behavior of polylactic acid stereocomplex (SC) induced by flow under pressure field[C]// Proceedings of 2017 National Polymer Academic Paper Conference. Chengdu: Chinese Chemical Society, 2017:34.
[53] TSUJI H, NAKANO M, HASHIMOTO M, et al. An electrospinning of poly(lactic acid) stereocomplex nanofibers[J]. Biomacromolecules, 2006, 7(12):3316-3320.
doi: 10.1021/bm060786e
[54] BAI D, LIU H, BAI H, et al. Low-temperature sintering of stereocomplex-type polylactide nascent powder:Effect of Crystallinity[J]. Macromolecules, 2017, 50(19):7611-7619.
doi: 10.1021/acs.macromol.7b01794
[1] 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93.
[2] 陈鹏, 廖世豪, 沈兰萍, 王瑄, 王鹏. 聚乳酸/聚酮共混纤维分散染料染色性能[J]. 纺织学报, 2022, 43(05): 12-17.
[3] 朱斐超, 张宇静, 张强, 叶翔宇, 张恒, 汪伦合, 黄瑞杰, 刘国金, 于斌. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(01): 49-57.
[4] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
[5] 宋雪旸, 张岩, 徐成功, 王萍, 阮芳涛. 碳纤维/聚丙烯/聚乳酸增强复合材料的力学性能[J]. 纺织学报, 2021, 42(11): 84-88.
[6] 何聚, 刘晓辉, 苏晓伟, 林生根, 任元林. 星型无卤阻燃剂改性粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(10): 34-40.
[7] 文玉峰, 马晓谱, 盛方园, 朱志国. 微胶囊化膨胀型阻燃剂的制备及其在聚乳酸中的应用[J]. 纺织学报, 2021, 42(06): 71-77.
[8] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[9] 温馨, 张须臻, 李勇, 黄文健, 卢晨. 水引发L-丙交酯开环聚合工艺研究[J]. 纺织学报, 2020, 41(12): 21-25.
[10] 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/壳聚糖/Fe3O4超细纤维膜对酸性蓝MTR的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24.
[11] 萧传敏, 肖长发, 张泰, 王新亚. 编织管增强型聚乳酸中空纤维膜结构及其性能[J]. 纺织学报, 2019, 40(08): 20-26.
[12] 魏海江, 江力, 张顺花. 耐高温相变蜡/聚丙烯共混物的制备及其性能[J]. 纺织学报, 2019, 40(06): 8-13.
[13] 莫达杰, 李旭明, 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能[J]. 纺织学报, 2019, 40(05): 12-17.
[14] 董浩, 张丽平, 刘怡宁, 王乐军, 刘亚运, 付少海. 聚乳酸纤维原液着色用改性炭黑的制备及其性能[J]. 纺织学报, 2019, 40(05): 64-69.
[15] 孙辉, 张恒源, 咸玉龙, 周传凯, 于斌. TiO2-Ag/聚乳酸纳米复合纤维的制备及其抗菌性能[J]. 纺织学报, 2019, 40(04): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!