纺织学报 ›› 2022, Vol. 43 ›› Issue (06): 86-93.doi: 10.13475/j.fzxb.20210203908

• 纺织工程 • 上一篇    下一篇

聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能

孙焕惟1, 张恒1,2(), 崔景强2,3, 朱斐超4, 王国锋2,3, 苏天阳2,3, 甄琪1   

  1. 1.中原工学院, 郑州 河南 451191
    2.河南省医用高分子材料技术与应用重点实验室,河南 新乡 453400
    3.河南驼人医疗器械集团有限公司, 河南 新乡 453400
    4.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
  • 收稿日期:2021-02-15 修回日期:2022-03-13 出版日期:2022-06-15 发布日期:2022-07-15
  • 通讯作者: 张恒
  • 作者简介:孙焕惟(1996—),男,硕士生。主要研究方向为功能性非织造材料的开发。
  • 基金资助:
    国家自然科学基金项目(52003306);国家生物医用材料生产应用示范平台资助项目(TC190H3ZV/1);河南省医用高分子材料技术与应用重点实验室资助项目(1-TR-B-03-210117);先进纺织装备技术省部共建协同创新中心资助项目(FZZ-2022-001);浙江省自然科学基金项目(LQ21E030013)

Preparation and mechanical properties of polylactic acid nonwovens via post-drafting assisted melt blown process

SUN Huanwei1, ZHANG Heng1,2(), CUI Jingqiang2,3, ZHU Feichao4, WANG Guofeng2,3, SU Tianyang2,3, ZHEN Qi1   

  1. 1. Zhongyuan University of Technology, Zhengzhou, Henan 451191, China
    2. Henan Key Laboratory of Medical Polymer Materials Technology and Application, Xinxiang, Henan 453400, China
    3. Henan Tuoren Medical Device Co., Ltd., Xinxiang, Henan 453400, China
    4. College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2021-02-15 Revised:2022-03-13 Published:2022-06-15 Online:2022-07-15
  • Contact: ZHANG Heng

摘要:

为改善聚乳酸(PLA)熔喷非织造材料的力学性能,在PLA热力学性能实验分析的基础上,采用后牵伸辅助熔喷成形工艺一步法制备了高结晶度的PLA熔喷非织造材料,并对材料的外观形态、拉伸断裂性能和顶破性能进行分析。结果表明:PLA聚合物的玻璃化转变温度为60.69 ℃,熔点为162.6 ℃,可以很好地用于高牵伸倍率的后牵伸辅助熔喷成形;随着牵伸倍率从1.0增大到3.0,高取向纤维(取向角度≤20°)的数量占比从28%增大至100%,超细纤维(纤维直径≤3 μm)的数量占比从23%增大到67%;同时,材料的结晶度从1.22%增大到37.43%,纵向拉伸断裂强度增大到4.33 N/mm2,顶破强力增大到36.8 N,力学性能有所提升。

关键词: 非织造材料, 聚乳酸, 微纳米纤维, 后牵伸辅助熔喷, 力学性能

Abstract:

In order to improve the mechanical properties of polylactic acid (PLA) melt blown nonwovens, samples of PLA melt blown nonwovens with high crystallinity were prepared by a large scale and one step post-drafting assisted melt blown process, based on the experimental analysis of the thermodynamic properties of PLA polymers. The morphology, tensile and bursting properties of the prepared samples were evaluated. The results show that the glass transition temperature and melting point of PLA were 60.69 ℃ and 162.6 ℃, respectively, suitable for the preparation at a high drafting ratio during the post-drafting assisted melt blown process. It was noted that with the drafting ratio increasing from 1.0 to 3.0, the proportion of high-oriented fibers (fiber orientation angle≤20°) was increased from 28% to 100%, and the proportion of the microfibers (fiber diameter ≤3 μm) was increased from 23% to 67%. The drafting ratio increase also caused the crystallinity to increase from 1.22% to 37.43%, the tensile breaking strength in machine direction to reach 4.33 N/mm2, and the bursting force to 36.8 N, demonstrating improvement of the mechanical properties of the PLA melt blown nonwovens due to the post-drafting assisted melt blown process.

Key words: nonwoven, polylactic acid, micro-nano fiber, post-drafting assisted melt blown process, mechanical property

中图分类号: 

  • TS176

图1

后牵伸辅助熔喷成形工艺制备PLA熔喷非织造材料的工艺原理图"

图2

PP、PE和PLA聚合物的DSC曲线"

图3

不同牵伸倍率PLA熔喷非织造材料的表面和截面电镜照片"

图4

纤维取向示意图"

图5

PLA熔喷非织造材料的纤维直径分布曲线"

图6

PLA熔喷非织造材料的纤维取向角度分布曲线"

图7

PLA熔喷非织造材料的XRD曲线和结晶度"

图8

PLA熔喷非织造材料的拉伸断裂强度-位移曲线"

表1

PLA熔喷非织造材料样品的拉伸断裂特性"

牵伸
倍率
R
面密度/
(g·m-2)
纵向断
裂强度/
(N·mm-2)
纵向断
裂伸长
率/%
横向断
裂强度/
(N·mm-2)
横向断
裂伸长
率/%
纵横向
强度比
1.0 119.90 1.92 6.14 1.75 8.10 1.10
1.8 113.00 3.47 3.58 0.51 43.62 6.80
2.1 107.80 3.86 3.30 0.36 43.80 10.72
2.4 92.40 4.01 3.19 0.34 44.93 11.79
2.7 84.60 4.20 3.06 0.32 57.53 13.13
3.0 80.10 4.33 2.63 0.31 75.43 13.97

图9

不同牵伸倍率PLA熔喷非织造材料的顶破曲线"

[1] DZIERZKOWSKA E, SCISŁOWSKA-CZARNECKA A, KUDZIN M, et al. Effects of process parameters on structure and properties of melt-blown poly(lactic acid) nonwovens for skin regeneration[J]. Journal of Functional Biomaterials, 2021, 12(1): 16.
doi: 10.3390/jfb12010016
[2] 朱斐超, 张宇静, 张强, 等. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(1):49-57.
ZHU Feichao, ZHANG Yujing, ZHANG Qiang, et al. Research progress and prospect on biodegradable polylactic acid-based melt-blown nonwovens[J]. Journal of Textile Research, 2022, 43(1):49-57.
[3] ZHANG Jianfeng, CHEN Gangjin, BHAT G S, et al. Electret characteristics of melt-blown polylactic acid fabrics for air filtration application[J]. Journal of Applied Polymer Science, 2020, 137(4): 48309.
doi: 10.1002/app.48309
[4] VADAS D, KMETYKÓ D, MAROSI G, et al. Application of melt-blown poly (lactic acid) fibres in self-reinforced composites[J]. Polymers, 2018, 10(7): 766.
doi: 10.3390/polym10070766
[5] 徐燕. 口罩用聚乳酸熔喷布的专利申请现状研究[J]. 化工管理, 2020(25): 89-92.
XU Yan. Study on patent application status of polylactic acid melt-blown nonwovens for masks[J]. Chemical Enterprise Management, 2020(25): 89-92.
[6] XU Yuanqiang, ZHANG Xiaomin, HAO Xibo, et al. Micro/nanofibrous nonwovens with high filtration performance and radiative heat dissipation property for personal protective face mask[J]. Chemical Engineering Journal, 2021, 423: 130175.
doi: 10.1016/j.cej.2021.130175
[7] ZHU Feichao, YU Bin, SU Juanjuan, et al. Study on PLA/PA11 bio-based toughening melt-blown nonwov-ens[J]. Autex Research Journal, 2020, 20(1): 24-31.
doi: 10.2478/aut-2019-0002
[8] 张矿生, 唐梅荣, 薛小佳, 等. 聚乳酸/聚乙二醇共混物的结晶与降解行为[J]. 化工学报, 2021, 72(2): 1181-1190.
ZHANG Kuangsheng, TANG Meirong, XUE Xiaojia, et al. Crystallization and degradation behavior of poly(lactic acid)/poly(ethylene glycol) blends[J]. CIESC Journal, 2021, 72(2): 1181-1190.
[9] WANG Ping, CUI Zhaopei, HU Xianhai, et al. Effect of ionic liquid segments of copolymer on compatibilization process and dielectric behavior of polylactide/polyvinylidene fluoride blends[J]. Journal of Applied Polymer Science, 2021, 138(3): 49702.
doi: 10.1002/app.49702
[10] 王巧姣. 结晶性尼龙11粒子与弹性体协同增韧聚乳酸及其机理研究[D]. 合肥: 中国科学技术大学, 2020: 6-10.
WANG Qiaojiao. Study on toughening of polylactide-based blends through crystalline nylon 11 particles and elastomer[D]. Hefei: University of Science and Technology of China, 2020:6-10.
[11] JIANG Jiandi, SU Lili, ZHANG Kun, et al. Rubber-toughened PLA blends with low thermal expansion[J]. Journal of Applied Polymer Science, 2013, 128(6): 3993-4000.
doi: 10.1002/app.38642
[12] 黄爱宾, 刘彩凤, 张晓惠. 聚乳酸共混的研究进展[J]. 材料导报, 2020, 34(S2):1586-1589.
HUANG Aibin, LIU Caifeng, ZHANG Xiaohui. Research progress of polylactic acid blending[J]. Materials Reports, 2020, 34(S2):1586-1589.
[13] 唐多, 翁云宣, 刁晓倩, 等. 环境友好型材料增韧改性聚乳酸研究进展[J]. 中国科学:化学, 2020, 50(12): 1769-1780.
TANG Duo, WENG Yunxuan, DIAO Xiaoqian, et,al. Research progress on toughening and modification of polylactic acid with environmentally friendly mate-rials[J]. Scientia Sinica (Chimica), 2020, 50(12): 1769-1780.
[14] ZHU Yifan, LI Jiang, GUO Shaoyun. Structure and properties of D-polylactide/L-polylactide composites prepared by multistage tensile extrusion[J]. Polymer Materials Science & Engineering, 2019, 35(9): 62-66.
[15] 杨青山, 毛雯雯, 邓炳耀, 等. 熔纺大直径聚乳酸单丝的制备与性能研究[J]. 合成纤维工业, 2021, 44(5):1-7.
YANG Qingshan, MAO Wenwen, DENG Bingyao, et al. Preparation and properties of melt-spun large-diameter polylactic acid monofilament[J]. China Synthetic Fiber Industry, 2021, 44(5):1-7.
[16] 韩万里, 杨利宏, 王茹飘, 等. PLA微纳米纤维复合过滤非织造布的制备与性能[J]. 工程塑料应用, 2016, 44(2):51-56.
HAN Wanli, YANG Lihong, WANG Rupiao. et al. Preparation and properties of PLA nano-microfibers composite filtration nonwovens[J]. Engineering Plastics Application, 2016, 44(2):51-56.
[17] 常过, 邓炳耀, 刘庆生, 等. PLA纺粘非织造材料的制备和表征[J]. 纺织学报, 2012, 33(8):35-39.
CHANG Guo, DENG Bingyao, LIU Qingsheng, et al. Preperation and characterization of PLA spunbonded nonwoven material[J]. Journal of Textile Research, 2012, 33(8):35-39.
doi: 10.1177/004051756303300105
[18] 赵中国, 张鑫, 程少华, 等. 高熔体强度聚乳酸的结晶和发泡性能[J]. 材料导报, 2020, 34(20):20182-20186.
ZHAO Zhongguo, ZHANG Xin, CHENG Shaohua, et al. Crystallization and foaming properties of high-melt-strength poly (lactic acid)[J]. Materials Reports, 2020, 34(20):20182-20186.
[19] JIA Shikui, YU Demei, WANG Zhong, et al. Morphologies, crystallization, and mechanical properties of PLA: based nanocomposites: synergistic effects of PEG/HNTs[J]. Journal of Applied Polymer Science, 2019, 136(18): 47385.
doi: 10.1002/app.47385
[20] SUN Hui, PENG Siwei, WANG Mingjun, et al. Preparation and characterization of magnetic PLA/Fe3O4-g-PLLA composite melt blown nonwoven fabric for air filtration[J]. Journal of Engineered Fibers and Fabrics, 2020, 15: 1-13.
[21] LI Shaojie, CHEN Taoyi, LIAO Xiao, et al. Effect of macromolecular chain movement and the interchain interaction on crystalline nucleation and spherulite growth of polylactic acid under high-pressure CO2[J]. Macromolecules, 2020, 53(1): 312-322.
doi: 10.1021/acs.macromol.9b01601
[22] 孙辉, 张恒源, 咸玉龙, 等. TiO2-Ag/聚乳酸纳米复合纤维的制备及其抗菌性能[J]. 纺织学报, 2019, 40(4):1-6.
SUN Hui, ZHANG Hengyuan, XIAN Yulong, et al. Preparation and antibacterial properties of TiO2-Ag/poly(lactic acid) nano-composite fibers[J]. Journal of Textile Research, 2019, 40(4):1-6.
doi: 10.1177/004051757004000101
[23] CAO Le, JIA Shikui, ZHANG Qifeng, et al. Influence of peg with different molecular weight on crystallization and thermal property of PLA/GNPs composite[J]. New Chemical Materials, 2020, 48(2): 125-129.
[24] 邢剑, 徐珍珍, 李大伟, 等. 聚乳酸气流牵伸纤维的制备与性能研究[J]. 化工新型材料, 2020, 48(11): 183-187.
XING Jian, XU Zhenzhen, LI Dawei, et al. Preparation and characterization of air drafted PLA fiber[J]. New Chemical Materials, 2020, 48(11): 183-187.
[25] JANG Keno Soo. Exploring polyethylene/polypropylene nonwoven fabrics derived from two-dimensionally co-extruded composites: effects of delamination, consolidation, drawing and nanoparticle incorporation on mechanics, pore size and permeability[J]. Composites Science and Technology, 2018, 165: 380-387.
doi: 10.1016/j.compscitech.2018.07.022
[26] ZHEN Qi, ZHANG H, LI Han, et al. Polypropylene-secondary alkane sulfonate micro/nanofibrous fabrics with aligned fibers for enhanced anisotropic wetting performances[J]. Applied Surface Science, 2022, 583: 152486.
doi: 10.1016/j.apsusc.2022.152486
[1] 石磊, 张琳炜, 刘亚, 夏磊, 庄旭品. 分离膜湿法非织造支撑体的结构设计与应用[J]. 纺织学报, 2022, 43(06): 15-21.
[2] 刘彦麟, 顾伟文, 魏建斐, 王文庆, 王锐. 耐热聚乳酸材料的研究进展[J]. 纺织学报, 2022, 43(06): 180-186.
[3] 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28.
[4] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[5] 陈鹏, 廖世豪, 沈兰萍, 王瑄, 王鹏. 聚乳酸/聚酮共混纤维分散染料染色性能[J]. 纺织学报, 2022, 43(05): 12-17.
[6] 赵波波, 王亮, 李敬毓, 万刚, 夏兆鹏, 刘雍. 六次甲基四胺交联酚醛纤维的制备及其性能[J]. 纺织学报, 2022, 43(05): 57-62.
[7] 邵灵达, 黄锦波, 金肖克, 田伟, 祝成炎. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(04): 68-73.
[8] 李兴兴, 李琴, 岳甜甜, 刘宇清. 微纳米纤维素材料的微流控制备技术研究进展[J]. 纺织学报, 2022, 43(04): 180-186.
[9] 方镁淇, 王茜, 李彦, 李超婧, 黎昊, 王璐. 女性压力性尿失禁吊带的设计及其体外力学性能评价[J]. 纺织学报, 2022, 43(03): 38-43.
[10] 谷元慧, 周红涛, 张典堂, 刘景艳, 王曙东. 碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制[J]. 纺织学报, 2022, 43(03): 95-102.
[11] 陈咏, 乌婧, 王朝生, 潘小虎, 李乃祥, 戴钧明, 王华平. 生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(02): 37-43.
[12] 赵家明, 孙辉, 于斌, 杨潇东. CuO/聚丙烯/乙烯-辛烯共聚物复合熔喷非织造材料的制备及其吸油性能[J]. 纺织学报, 2022, 43(02): 89-97.
[13] 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73.
[14] 丁倩, 邓炳耀, 李昊轩. 全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展[J]. 纺织学报, 2022, 43(01): 36-42.
[15] 闵小豹, 潘志娟. 生物质纤维/菠萝叶纤维多组分混纺纱线的品质与性能[J]. 纺织学报, 2022, 43(01): 74-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!