纺织学报 ›› 2022, Vol. 43 ›› Issue (06): 9-14.doi: 10.13475/j.fzxb.20210804806
王茜1,2, 乔燕莎1,2, 王君硕1, 李彦1,2,3(), 王璐1,2,3
WANG Qian1,2, QIAO Yansha1,2, WANG Junshuo1, LI Yan1,2,3(), WANG Lu1,2,3
摘要:
为将亲水两性离子材料与惰性聚丙烯(PP)补片有效结合,降低蛋白质在补片表面的吸附,利用三价铁离子和单宁酸(TA)层层自组装的金属酚醛网络(MPN),介导聚羧酸甜菜碱甲基丙烯酸酯(PCBMA)固定在PP补片上,对该改性涂层补片的微观形貌、表面成分、接触角、表面电位、力学性能、抗蛋白吸附性能和细胞毒性进行表征与分析。结果表明:MPN可将PCBMA均匀固定在单丝表面,改变补片的表面化学组成;PCBMA-Fe/TA涂层将PP表面的水接触角降低至37°,表面电位由-55.7 mV提高到-5.14 mV;涂层不影响PP补片的力学性能,并为补片带来了显著的抗蛋白吸附效果;改性补片的相对细胞活力达到89%,表现出良好的生物相容性。研究结果有望为惰性医疗器械的抗污改性提供参考。
中图分类号:
[1] | 段先召, 王婉东, 陈洪流. 腹股沟疝修补术后慢性疼痛的最新研究进展[J]. 世界最新医学信息文摘, 2018, 18(72): 78-82. |
DUAN Xianzhao, WANG Wandong, CHEN Hongliu. Recent advances in chronic pain after inguinal hernia repair[J]. World Latest Medicine Information, 2018, 18(72): 78-82. | |
[2] |
SANDERS D L, KINGSNORTH A N. Prosthetic mesh materials used in hernia surgery[J]. Expert Review of Medical Devices, 2012, 9(2): 159-179.
doi: 10.1586/erd.11.65 |
[3] |
SANBHAL N, MIAO L L, XU R, et al. Physical structure and mechanical properties of knitted hernia mesh materials: a review[J]. Journal of Industrial Textiles, 2018, 48(1): 333-360.
doi: 10.1177/1528083717690613 |
[4] |
NIEBUHR H, WEGNER F, HUKAUF M, et al. What are the influencing factors for chronic pain following TAPP inguinal hernia repair: an analysis of 20004 patients from the Herniamed Registry[J]. Surgical Endoscopy, 2018, 32(4): 1971-1983.
doi: 10.1007/s00464-017-5893-2 |
[5] |
LIU W B, XIE Y J, ZHENG Y D, et al. Regulatory science for hernia mesh: current status and future perspectives[J]. Bioactive Materials, 2021, 6(2): 420-432.
doi: 10.1016/j.bioactmat.2020.08.021 |
[6] |
CHEN Q, ZHANG D, GU J, et al. The impact of antifouling layers in fabricating bioactive surfaces[J]. Acta Biomaterialia, 2021, 126: 45-62.
doi: 10.1016/j.actbio.2021.03.022 |
[7] |
ZHANG D H, CHEN Q, SHI C, et al. Dealing with the foreign-body response to implanted biomaterials: strategies and applications of new materials[J]. Advanced Functional Materials, 2021, 31(6): 2007226.
doi: 10.1002/adfm.202007226 |
[8] |
NADIZADEH Z, MAHDAVI H. Grafting of zwitterion polymer on polyamide nanofiltration membranes via surface-initiated RAFT polymerization with improved antifouling properties as a new strategy[J]. Separation and Purification Technology, 2021, 254: 117605.
doi: 10.1016/j.seppur.2020.117605 |
[9] |
ZHANG H R, ZHANG X M, KUANG Z, et al. Bionic antibacterial modification of IOL through SI-RAFT polymerization of P(TOEAC-co-MPC) brushes to prevent PCO and endophthalmitis[J]. Polymer Testing, 2020, 88: 106553.
doi: 10.1016/j.polymertesting.2020.106553 |
[10] |
LIN Y, WANG L, ZHOU J, et al. Surface modification of PVA hydrogel membranes with carboxybetaine methacrylate via PET-RAFT for anti-fouling[J]. Polymer, 2019, 162: 80-90.
doi: 10.1016/j.polymer.2018.12.026 |
[11] |
KIM S Y, SEO H J, KIM S, et al. Formation of various polymeric films via surface-initiated ARGET ATRP on silicon substrates[J]. Bulletin of the Korean Chemical Society, 2021, 42(5): 761-766.
doi: 10.1002/bkcs.12256 |
[12] |
LORUSSO E, ALI W, LENIART M, et al. Tuning the density of zwitterionic polymer brushes on PET fabrics by aminolysis: effect on antifouling performances[J]. Polymers, 2020, 12(1): 6.
doi: 10.3390/polym12010006 |
[13] |
XIE W, TIRAFERRI A, JI X, et al. Green and sustainable method of manufacturing anti-fouling zwitterionic polymers-modified poly(vinyl chloride) ultrafiltration membranes[J]. Journal of Colloid and Interface Science, 2021, 591: 343-351.
doi: 10.1016/j.jcis.2021.01.107 |
[14] |
LIN Y C, CHAO C M, WANG D K, et al. Enhancing the antifouling properties of a PVDF membrane for protein separation by grafting branch-like zwitterions via a novel amphiphilic SMA-HEA linker[J]. Journal of Membrane Science, 2021, 624: 119126.
doi: 10.1016/j.memsci.2021.119126 |
[15] |
EJIMA H, RICHARDSON J J, CARUSO F. Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces[J]. Nano Today, 2017, 12: 136-148.
doi: 10.1016/j.nantod.2016.12.012 |
[16] |
QIAO Y S, LI Y, ZHANG Q, et al. Dopamine-mediated zwitterionic polyelectrolyte-coated polypropylene hernia mesh with synergistic anti-inflammation effects[J]. Langmuir, 2020, 36(19): 5251-5261.
doi: 10.1021/acs.langmuir.0c00602 |
[17] |
JAHNERT T, HAGER M D, SCHUBERT U S. Application of phenolic radicals for antioxidants, as active materials in batteries, magnetic materials and ligands for metal-complexes[J]. Journal of Materials Chemistry A, 2014, 2(37): 15234-15251.
doi: 10.1039/C4TA03023K |
[18] |
CHEN S, LI L, ZHAO C, et al. Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials[J]. Polymer, 2010, 51(23): 5283-5293.
doi: 10.1016/j.polymer.2010.08.022 |
[19] |
WANG F, ZHANG H, YU B, et al. Review of the research on anti-protein fouling coatings materials[J]. Progress in Organic Coatings, 2020, 147: 105860.
doi: 10.1016/j.porgcoat.2020.105860 |
[20] | TANAKA M, MORITA S, HAYASHI T. Role of interfacial water in determining the interactions of proteins and cells with hydrated materials[J]. Colloids and Surfaces B: Bio Interfaces, 2021, 198: 111449. |
[1] | 朱小威, 韦天琛, 李亦江, 邢铁玲, 陈国强. 聚苯乙烯/铁-单宁酸配合物微球在棉织物上的结构生色[J]. 纺织学报, 2022, 43(05): 32-37. |
[2] | 刘新华, 刘海龙, 方寅春, 严鹏, 侯广开. 聚乙烯亚胺/植酸层层自组装阻燃涤/棉混纺织物制备及其性能[J]. 纺织学报, 2021, 42(11): 103-109. |
[3] | 刘淑萍, 李亮, 刘让同, 胡泽栋, 耿长军. 棉织物的3-氨丙基三乙氧基硅烷阻燃整理[J]. 纺织学报, 2021, 42(10): 107-114. |
[4] | 王华清, 闫红强. 生物基三组分自组装涂层构筑及其对苎麻织物的阻燃改性[J]. 纺织学报, 2021, 42(04): 132-138. |
[5] | 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111. |
[6] | 乔燕莎, 王茜, 李彦, 桑佳雯, 王璐. 聚多巴胺涂层聚丙烯疝气补片的制备及其体外炎性反应[J]. 纺织学报, 2020, 41(09): 162-166. |
[7] | 王访鹤, 王锐, 魏丽菲, 王照颖, 张安莹, 王德义. 层层自组装阻燃改性聚酯织物的制备及其性能[J]. 纺织学报, 2019, 40(11): 106-112. |
[8] | 范静静, 王鸿博, 傅佳佳, 王文聪. 层层自组装的碳纳米管复合导电棉织物制备[J]. 纺织学报, 2019, 40(04): 90-95. |
[9] | 刘菲, 李秋瑾, 巩继贤, 李政, 刘秀明, 张健飞. 层层自组装多糖微胶囊的制备及其缓释型纯棉织物修饰应用[J]. 纺织学报, 2019, 40(02): 114-118. |
[10] | 陈威 关晋平 陈国强 匡小慧. 静电层层自组装法整理多巴胺改性涤/棉混纺织物的阻燃性能[J]. 纺织学报, 2017, 38(09): 94-100. |
[11] | 任元林 张悦 曾倩 谷叶童. 织物阻燃涂层新工艺的研究进展[J]. 纺织学报, 2017, 38(09): 168-173. |
|