纺织学报 ›› 2022, Vol. 43 ›› Issue (07): 111-120.doi: 10.13475/j.fzxb.20210501310
张雅宁1,2,3, 张辉1,2,3(), 宋悦悦1,2,3, 李文明1,2,3, 李雯君1,2,3, 姚佳乐1,2,3
ZHANG Yaning1,2,3, ZHANG Hui1,2,3(), SONG Yueyue1,2,3, LI Wenming1,2,3, LI Wenjun1,2,3, YAO Jiale1,2,3
摘要:
针对废弃口罩和印染废水处理难题,利用金属有机骨架ZIF-8高度可调的孔径、大的比表面积、优异的吸附和光催化活性,基于化学共沉淀法和煅烧技术制备出ZIF-8/Ag/TiO2异质结,并将其负载到废弃的口罩上。对颗粒物和口罩复合材料的形貌、结构、比表面积、键合状态、能带结构和热稳定性进行了分析,测定了吸附、光催化降解亚甲基蓝和刚果红染料性能。研究结果表明:较原始口罩,废弃口罩基ZIF-8/Ag/TiO2复合材料的吸附、可见光光催化降解亚甲基蓝染料能力分别提高了12.9倍和4.8倍,且可多次重复使用;较ZIF-8和ZIF-8/TiO2,ZIF-8/Ag/TiO2异质结吸附能力和可见光光催化活性增强。Ag掺杂ZIF-8/ZnO与C、N掺杂TiO2使得ZIF-8/Ag/TiO2异质结带隙变窄,且有孔的中空结构能够更加充分地吸收可见光。
中图分类号:
[1] | HOLKAR C R, JADHAV A J, PINJARI D V, et al. A critical review on textile wastewater treatments: possible approaches[J]. Journal of Environment Management, 2016, 182:351-366. |
[2] | SINGH R L, SINGH P K, SINGH R P, et al. Enzymatic decolorization and degradation of azo dyes:areview[J]. International Biodeteriorationand Biodegradation, 2015, 104: 21-31. |
[3] |
TANG L, YU J F, PANG Y, et al. Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal[J]. Chemical Engineering Journal, 2018, 336:160-169.
doi: 10.1016/j.cej.2017.11.048 |
[4] |
WANG C Y, PAN R Y, WAN X Y, et al. Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China[J]. International Journal of Environmental Research and Public Health, 2020.DOI: 10.3390/ijerph17051729.
doi: 10.3390/ijerph17051729 |
[5] | 陈海明, 董侠, 赵莹, 等. 废弃一次性医用口罩的回收利用与化学升级再造[J]. 高分子学报, 2020, 51(12): 1295-1306. |
CHEN Haiming, DONG Xia, ZHAO Ying, et al. Recycling and chemical upcycling of waste disposable medical masks[J]. Acta Polymerica Sinica, 2020, 51(12): 1295-1306. | |
[6] | GOPAKUMAR DA, PASQUINI D, HENRIQUE MA, et al. Meldrum's acid modified cellulose nanofiber-based polyvinylidene fluoride microfiltration membrane for dye water treatment and nanoparticle removal[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 2026-2033. |
[7] |
SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chemical Reviews, 2014, 114(19): 9919-9986.
doi: 10.1021/cr5001892 |
[8] |
LI P, WANG J, PENG T, et al. Heterostructure of anatase-rutile aggregates boosting the photoreduction of U(VI)[J]. Applied Surface Science, 2019, 483: 670-676.
doi: 10.1016/j.apsusc.2019.03.330 |
[9] |
LIU Q, ZHOU B B, XU M, et al. Integration of nanosized ZIF-8 particles onto mesoporous TiO2 nanobeads for enhanced photocatalytic activity[J]. RSC Advances, 2017, 7(13): 8004-8010.
doi: 10.1039/C6RA28277F |
[10] |
JIAO L, WANG Y, JIANG H L, et al. Metal-organic frameworks as platforms for catalytic applications[J]. Advanced Materials, 2018.DOI: 10.1002/adma.201703663.
doi: 10.1002/adma.201703663. |
[11] | LIY, ZHOU K, HE M, et al. Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption[J]. Micropororous and Mesoporous Materials, 2016, 234:287-292. |
[12] |
YOON S, CALVO J, SO M J C. Removal of Acid Orange 7 from aqueous solution by metal-organic frameworks[J]. Crystals, 2018.DOI: 10.3390/cryst9010017.
doi: 10.3390/cryst9010017 |
[13] |
FU N, REN X C. Synthesis of double-shell hollow TiO2@ZIF-8 nanoparticles with enhanced photocatalytic activities[J]. Frontiers in Chemistry, 2020. DOI: 10.3389/fchem.2020.578847.
doi: 10.3389/fchem.2020.578847. |
[14] |
MING Z, SHANG Q, WAN Y, et al. Self-template synthesis of double-shell TiO2@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation[J]. Applied Catalysis B-Environmental, 2018, 241: 149-158.
doi: 10.1016/j.apcatb.2018.09.036 |
[15] |
ZENG X, HUANG L, WANG C, et al. Sonocrystallization of ZIF-8 on electrostatic spinning TiO2 nanofibers surface with enhanced photocatalysis property through synergistic effect[J]. ACS Applied Materials and Interfaces, 2016, 8(31): 20274-20282.
doi: 10.1021/acsami.6b05746 |
[16] |
JIA M, YANG Z, XU H, et al. Integrating N and F co-doped TiO2 nanotubes with ZIF-8 as photoelectrode for enhanced photo-electrocatalytic degradation of sulfamethazine[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2020.124388.
doi: 10.1016/j.cej.2020.124388. |
[17] |
PIPELZADEH E, RUDOLPH V, HANSON G, et al. Photoreduction of CO2 on ZIF-8/TiO2 nanocomposites in a gaseous photoreactor under pressure swing[J]. Applied Catalysis B-Environmental, 2017, 218: 672-678.
doi: 10.1016/j.apcatb.2017.06.054 |
[18] | DING Y, XU Y, DING B, et al. Structure induced selective adsorption performance of ZIF-8 nanocrystals in water[J]. Colloidsand Surfaces A-Physicochemicaland Engineering Aspects, 2017, 520: 661-667. |
[19] | VOROKH A S. Scherrer formula: estimation of error in determining small nanoparticle size[J]. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(3): 364-369. |
[20] |
LI R, LI W, JIN C, et al. Fabrication of ZIF-8@TiO2 micron composite via hydrothermal method with enhanced absorption and photocatalytic activities in tetracycline degradation[J]. Journalof Alloysand Compoumds, 2020. DOI: 10.1016/j.jallcom.2020.154008.
doi: 10.1016/j.jallcom.2020.154008. |
[21] | SUN Y, LI X, VIJAYAKUMAR A, et al. Hydrogen generation and degradation of organic dyes by new piezocatalytic 0.7Bi FeO3-0.3Ba TiO3 nanoparticles with proper band alignment[J]. ACS Appiled Materials and Interfaces, 2021, 13(9): 11050-11057. |
[22] |
CHU C Y, HUANG M H. Facet-dependent photocatalytic properties of Cu2O crystals probed by using electron, hole and radical scavengers[J]. Journal of Materials Chemistry A, 2017, 5(29): 15116-15123.
doi: 10.1039/C7TA03848H |
[23] |
CHEN T, ZHANG H, HAN Y, et al. Photocatalytic mechanism and performance of a novel wool flake-BiFeO3 nanosheet-TiO2 (wool-BFO-TiO2) core-shell structured composite photocatalyst[J]. Nanotechnology, 2021.DOI: 10.1088/1361-6528/abf072.
doi: 10.1088/1361-6528/abf072 |
[24] |
ZHONG W L, LI C, LIU X M, et al. Liquid phase deposition of flower-like TiO2 microspheres decorated by ZIF-8 nanoparticles with enhanced photocatalytic activity[J]. Microporousand Mesoporous Materials, 2020. DOI: 10.1016/j.micromeso.2020.110401.
doi: 10.1016/j.micromeso.2020.110401. |
[25] | SHAHRAK M N, GHAHRAMANINEZHAD M, EYDIFARASH M. Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(VI) ions from aqueous solution[J]. Environmental Scienceand Pollution Research, 2017, 24(10): 9624-9634. |
[26] |
TRAN U P N, LE K K A, PHAN N T S. Expanding applications of metal-organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction[J]. ACS Catalysis, 2011, 1(2): 120-127.
doi: 10.1021/cs1000625 |
[27] |
RONG P, REN S, JIANG J C, et al. Preparation and photocatalytic properties of metal-doped ZnO nanofilms grown on graphene-coated flexible substrates[J]. Materials, 2020.DOI: 10.3390/ma13163589.
doi: 10.3390/ma13163589 |
[28] |
BANFANA A P, YAN X R, WEI X, et al. Polypropylene nanocomposites reinforced with low weight percent graphene nanoplatelets[J]. Composites Part B-Engineering, 2017, 109: 101-107.
doi: 10.1016/j.compositesb.2016.10.048 |
[29] |
LIU S, WANG J, YU J. ZIF-8 derived bimodal carbon modified ZnO photocatalysts with enhanced photocatalytic CO2 reduction performance[J]. RSC Advances, 2016, 6(65): 59998-60006.
doi: 10.1039/C6RA11264A |
[30] |
KUMAR P N, DEEPA M, SRIVASTAVA A K. Ag plasmonic nanostructures and a novel gel electrolyte in a high efficiency TiO2/CdS solar cell[J]. Physical Chemistry Chemical Physics, 2015, 17(15): 10040-10052.
doi: 10.1039/C4CP05820H |
[31] |
JING Y, LEI Q, XIA C, et al. Synthesis of Ag and AgCl co-doped ZIF-8 hybrid photocatalysts with enhanced photocatalytic activity through a synergistic effect[J]. RSC Advances, 2020, 10(2): 698-704.
doi: 10.1039/C9RA10100D |
[32] |
RAN J, WANG C, ZHANG J, et al. New insight into polydopamine@ZIF-8 nanohybrids: a zinc-releasing container for potential anticancer activity[J]. Polymers, 2018.DOI: 10.3390/polym10050476.
doi: 10.3390/polym10050476 |
[33] |
LI S, CHEN J, ZHENG F, et al. Synthesis of the double-shell anatase-rutile TiO2 hollow spheres with enhanced photocatalytic activity[J]. Nanoscale, 2013, 5(24): 12150-12155.
doi: 10.1039/c3nr04043g |
[34] | HU C, HUANG Y C, CHANG A L, et al. Amine functionalized ZIF-8 as a visible-light-driven photocatalyst for Cr(VI) reduction[J]. Journal of Collold and Interface Science, 2019, 553:372-381. |
[35] |
ZHAN Y F, LAN J W, SHANG J J, et al. Durable ZIF-8/Ag/AgCl/TiO2 decorated PAN nanofibers with high visible light photocatalytic and antibacterial activities for degradation of dyes[J]. Journal of Alloys and Compounds, 2020.DOI: 10.1016/j.jallcom.2019.153579.
doi: 10.1016/j.jallcom.2019.153579. |
[36] | DONG P, ZHANG Y, NIE X, et al. A ZIF-8 decorated TiO2 grid-like film with high CO2 adsorption for CO2 photoreduction[J]. Journal of CO2 Utilization, 2018, 24: 369-375. |
[37] |
LIU X, ZHANG J, DONG Y, et al. A facile approach for the synthesis of Z-scheme photocatalyst ZIF-8/g-C3N4 with highly enhanced photocatalytic activity under simulated sunlight[J]. New Journal of Chemistry, 2018, 42(14): 12180-12187.
doi: 10.1039/C8NJ01782D |
[38] |
FAZAELI R, ALIYAN H. Novel hierarchical TiO2@ZIF-8 for photodecolorization of semi-real sample bromothymol blue aqueous solution[J]. Journal of the Iranian Chemical Society, 2019, 16(1): 1-9.
doi: 10.1007/s13738-018-1475-z |
[39] |
YU Y M, XIA J X, CHEN C, et al. One-step synthesis of a visible-light driven C@N-TiO2 porous nanocomposite: Enhanced absorption, photocatalytic and photoelectrochemical performance[J]. Journal of Physics and Chemistry of Solids, 2020. DOI: 10.1016/j.jpcs.2019.109169.
doi: 10.1016/j.jpcs.2019.109169. |
[40] |
YAN D, WU X, PEI J Y, et al. Construction of g-C3N4/TiO2/Ag composites with enhanced visible-light photocatalytic activity and antibacterial properties[J]. Ceramics International, 2020, 46(1): 696-702.
doi: 10.1016/j.ceramint.2019.09.022 |
[41] |
LIU Y T, CAI T, WANG L L, et al. Hollow microsphere TiO2/ZnO p-n heterojuction with high photocatalytic performance for 2,4-dinitropheno mineralization[J]. Nano, 2017. DOI: 10.1142/S179329201750076X.
doi: 10.1142/S179329201750076X |
[1] | 高陆玺, 吕雪川, 张弛, 宋翰林, 高肖汉. 用于印染废水处理的改性絮凝剂合成及其脱色性能[J]. 纺织学报, 2022, 43(07): 121-128. |
[2] | 钱佳琪, 瞿建刚, 胡啸林, 毛庆辉. 还原氧化石墨烯/粘胶基钒酸铋光催化材料的制备及其性能[J]. 纺织学报, 2022, 43(06): 100-106. |
[3] | 费建武, 吕明泽, 刘利伟, 王春红, 韩振邦. 基于双层微纳米纤维膜的气液固三相体系构建及其光催化性能[J]. 纺织学报, 2022, 43(06): 37-43. |
[4] | 王茜, 乔燕莎, 王君硕, 李彦, 王璐. 金属酚醛/两性离子聚合物涂层聚丙烯补片的制备及其抗蛋白吸附性能[J]. 纺织学报, 2022, 43(06): 9-14. |
[5] | 陈鹏, 廖世豪, 沈兰萍, 王瑄, 王鹏. 聚乳酸/聚酮共混纤维分散染料染色性能[J]. 纺织学报, 2022, 43(05): 12-17. |
[6] | 刘宇, 谢汝义, 宋亚伟, 齐元章, 王辉, 房宽峻. 涤/棉交织物一浴法轧染工艺[J]. 纺织学报, 2022, 43(05): 18-25. |
[7] | 韩宜君, 许君, 畅琪琪, 张诚. 纺织基柔性染料敏化太阳能电池的研究进展[J]. 纺织学报, 2022, 43(05): 185-194. |
[8] | 王成成, 龚筱丹, 王振, 马群旺, 张丽平, 付少海. 高灵敏温感变色微胶囊的制备及其在智能纺织品上的应用[J]. 纺织学报, 2022, 43(05): 38-42. |
[9] | 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123. |
[10] | 王东伟, 房宽峻, 刘秀明, 张鑫卿, 安芳芳. 胺化活性红195/聚合物微球的制备及其在棉织物染色中的应用[J]. 纺织学报, 2022, 43(04): 90-96. |
[11] | 王菊, 张丽平, 王晓春, 杨萌阳. 高疏水性染料的制备及其对超高分子量聚乙烯织物的染色性能[J]. 纺织学报, 2022, 43(04): 97-101. |
[12] | 何杨, 张瑞萍, 何勇, 范爱民. 激光改性涤纶织物的分散染料染色性能[J]. 纺织学报, 2022, 43(04): 102-109. |
[13] | 禹凡, 郑涛, 汤涛, 金梦婷, 朱海霖, 于斌. 基于金属有机框架化合物的非织造复合材料制备及其对废水中六价铬的去除[J]. 纺织学报, 2022, 43(03): 139-145. |
[14] | 成悦, 胡颖捷, 付译鋆, 李大伟, 张伟. 抗菌止血非织造弹性绷带的制备及其性能[J]. 纺织学报, 2022, 43(03): 31-37. |
[15] | 邓杨, 石现兵, 王涛, 刘利伟, 韩振邦. 负载MIL-53(Fe)的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 58-63. |
|