纺织学报 ›› 2022, Vol. 43 ›› Issue (07): 111-120.doi: 10.13475/j.fzxb.20210501310

• 染整与化学品 • 上一篇    下一篇

废弃口罩基ZIF-8/Ag/TiO2复合材料的制备及其光催化降解染料性能

张雅宁1,2,3, 张辉1,2,3(), 宋悦悦1,2,3, 李文明1,2,3, 李雯君1,2,3, 姚佳乐1,2,3   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.西安工程大学 功能纺织材料研究中心, 陕西西安 710048
    3.西安工程大学 省部共建智能纺织材料与制品国家重点实验室(培育), 陕西 西安 710048
  • 收稿日期:2021-05-07 修回日期:2022-04-13 出版日期:2022-07-15 发布日期:2022-07-29
  • 通讯作者: 张辉
  • 作者简介:张雅宁(1998—),女,硕士生。主要研究方向为纺织固体废弃物回收再利用研究。
  • 基金资助:
    大学生创新创业训练计划项目(S202010709035);陕西省国际科技合作计划项目(2020KW-069);国家自然科学基金面上项目(51873169)

Preparation of discarded mask-based ZIF-8/Ag/TiO2 composite and its photocatalytic property for dye degradation

ZHANG Yaning1,2,3, ZHANG Hui1,2,3(), SONG Yueyue1,2,3, LI Wenming1,2,3, LI Wenjun1,2,3, YAO Jiale1,2,3   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Research Centre for Functional Textile Materials, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    3. State Key Laboratory of Intelligent Textile Material and Products, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2021-05-07 Revised:2022-04-13 Published:2022-07-15 Online:2022-07-29
  • Contact: ZHANG Hui

摘要:

针对废弃口罩和印染废水处理难题,利用金属有机骨架ZIF-8高度可调的孔径、大的比表面积、优异的吸附和光催化活性,基于化学共沉淀法和煅烧技术制备出ZIF-8/Ag/TiO2异质结,并将其负载到废弃的口罩上。对颗粒物和口罩复合材料的形貌、结构、比表面积、键合状态、能带结构和热稳定性进行了分析,测定了吸附、光催化降解亚甲基蓝和刚果红染料性能。研究结果表明:较原始口罩,废弃口罩基ZIF-8/Ag/TiO2复合材料的吸附、可见光光催化降解亚甲基蓝染料能力分别提高了12.9倍和4.8倍,且可多次重复使用;较ZIF-8和ZIF-8/TiO2,ZIF-8/Ag/TiO2异质结吸附能力和可见光光催化活性增强。Ag掺杂ZIF-8/ZnO与C、N掺杂TiO2使得ZIF-8/Ag/TiO2异质结带隙变窄,且有孔的中空结构能够更加充分地吸收可见光。

关键词: 废弃口罩, ZIF-8/Ag/TiO2异质结, 吸附, 光催化降解, 染料, 印染废水, 废水处理

Abstract:

Aiming to use discarded masks for purifying printing and dyeing wastewater, ZIF-8/Ag/TiO2 heterojunction was prepared based on the chemical co-precipitation and calcination methods using metal organic framework ZIF-8 as the supporting material, making use of the characteristics of ZIF-8 being highly adjustable pore size, large specific surface area, excellent adsorption capability, and high photocatalytic activity. The synthesized ZIF-8/Ag/TiO2 particles were loaded on the surface of discarded mask. The morphology, structure, specific surface area, chemical bonding state, electronic energy band structure, and thermal stability of the resultant particles and mask-based composite were systemically characterized. The properties of adsorption and visible light photocatalytic degradation of methylene blue and Congo Red dyes were investigated. Experimental results indicated that in comparison with the untreated mask, the adsorption and photocatalytic degradation capabilities towards methylene blue by the mask-ZIF-8/Ag/TiO2 composite were improved by 12.9 and 4.8 times respectively with good reusability. ZIF-8/Ag/TiO2 heterojunction exhibited stronger adsorption capacity and visible light photocatalytic activity as compared with ZIF-8 and ZIF-8/TiO2. The band-gap of ZIF-8/Ag/TiO2 was narrowed due to the doping of Ag into ZIF-8/ZnO and the doping of C and N into TiO2. In addition, the hollow-structured ZIF-8/Ag/TiO2 with holes could absorb more visible lights.

Key words: discarded mask, ZIF-8/Ag/TiO2 heterojunction, adsorption, photocatalytic degradation, dye, printing and dyeing wastewater, waste water treatment

中图分类号: 

  • TS151

图1

ZIF-8、ZIF-8/Ag/TiO2和PP/ZIF-8/Ag/TiO2的扫描电镜照片"

图2

ZIF-8、ZIF-8/Ag/TiO2和口罩复合材料的X射线衍射谱图"

图3

ZIF-8/Ag/TiO2异质结透射电镜照片和元素面扫描谱图"

图4

ZIF-8和ZIF-8/Ag/TiO2异质结的氮气吸附-解吸等温线和孔径分布曲线"

图5

ZIF-8、ZIF-8/Ag/TiO2异质结和PP/ZIF-8/Ag/TiO2X射线光电子能谱总谱和窄谱图及其原子百分比结果"

图6

ZIF-8、ZIF-8/Ag/TiO2异质结和PP/ZIF-8/Ag/TiO2漫反射光谱图与(αhv)2与hv关系图以及ZIF-8和 ZIF-8/Ag/TiO2异质结的紫外光电子谱图"

图7

ZIF-8/Ag/TiO2异质结热失重和微商热重曲线"

图8

PP口罩和PP/ZIF-8/Ag/TiO2吸附和可见光辐照光催化降解亚甲基蓝染料降解曲线和动力学拟合曲线"

图9

ZIF-8、P25、ZIF-8/TiO2和ZIF-8/Ag/TiO2异质结重复性吸附亚甲基蓝和刚果红染料结果"

图10

ZIF-8、P25、ZIF-8/TiO2和ZIF-8/Ag/TiO2异质结重复光催化降解亚甲基蓝和刚果红染料结果"

图11

ZIF-8/Ag/TiO2异质结光催化分解染料反应原理图"

[1] HOLKAR C R, JADHAV A J, PINJARI D V, et al. A critical review on textile wastewater treatments: possible approaches[J]. Journal of Environment Management, 2016, 182:351-366.
[2] SINGH R L, SINGH P K, SINGH R P, et al. Enzymatic decolorization and degradation of azo dyes:areview[J]. International Biodeteriorationand Biodegradation, 2015, 104: 21-31.
[3] TANG L, YU J F, PANG Y, et al. Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal[J]. Chemical Engineering Journal, 2018, 336:160-169.
doi: 10.1016/j.cej.2017.11.048
[4] WANG C Y, PAN R Y, WAN X Y, et al. Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China[J]. International Journal of Environmental Research and Public Health, 2020.DOI: 10.3390/ijerph17051729.
doi: 10.3390/ijerph17051729
[5] 陈海明, 董侠, 赵莹, 等. 废弃一次性医用口罩的回收利用与化学升级再造[J]. 高分子学报, 2020, 51(12): 1295-1306.
CHEN Haiming, DONG Xia, ZHAO Ying, et al. Recycling and chemical upcycling of waste disposable medical masks[J]. Acta Polymerica Sinica, 2020, 51(12): 1295-1306.
[6] GOPAKUMAR DA, PASQUINI D, HENRIQUE MA, et al. Meldrum's acid modified cellulose nanofiber-based polyvinylidene fluoride microfiltration membrane for dye water treatment and nanoparticle removal[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 2026-2033.
[7] SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis: mechanisms and materials[J]. Chemical Reviews, 2014, 114(19): 9919-9986.
doi: 10.1021/cr5001892
[8] LI P, WANG J, PENG T, et al. Heterostructure of anatase-rutile aggregates boosting the photoreduction of U(VI)[J]. Applied Surface Science, 2019, 483: 670-676.
doi: 10.1016/j.apsusc.2019.03.330
[9] LIU Q, ZHOU B B, XU M, et al. Integration of nanosized ZIF-8 particles onto mesoporous TiO2 nanobeads for enhanced photocatalytic activity[J]. RSC Advances, 2017, 7(13): 8004-8010.
doi: 10.1039/C6RA28277F
[10] JIAO L, WANG Y, JIANG H L, et al. Metal-organic frameworks as platforms for catalytic applications[J]. Advanced Materials, 2018.DOI: 10.1002/adma.201703663.
doi: 10.1002/adma.201703663.
[11] LIY, ZHOU K, HE M, et al. Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption[J]. Micropororous and Mesoporous Materials, 2016, 234:287-292.
[12] YOON S, CALVO J, SO M J C. Removal of Acid Orange 7 from aqueous solution by metal-organic frameworks[J]. Crystals, 2018.DOI: 10.3390/cryst9010017.
doi: 10.3390/cryst9010017
[13] FU N, REN X C. Synthesis of double-shell hollow TiO2@ZIF-8 nanoparticles with enhanced photocatalytic activities[J]. Frontiers in Chemistry, 2020. DOI: 10.3389/fchem.2020.578847.
doi: 10.3389/fchem.2020.578847.
[14] MING Z, SHANG Q, WAN Y, et al. Self-template synthesis of double-shell TiO2@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation[J]. Applied Catalysis B-Environmental, 2018, 241: 149-158.
doi: 10.1016/j.apcatb.2018.09.036
[15] ZENG X, HUANG L, WANG C, et al. Sonocrystallization of ZIF-8 on electrostatic spinning TiO2 nanofibers surface with enhanced photocatalysis property through synergistic effect[J]. ACS Applied Materials and Interfaces, 2016, 8(31): 20274-20282.
doi: 10.1021/acsami.6b05746
[16] JIA M, YANG Z, XU H, et al. Integrating N and F co-doped TiO2 nanotubes with ZIF-8 as photoelectrode for enhanced photo-electrocatalytic degradation of sulfamethazine[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2020.124388.
doi: 10.1016/j.cej.2020.124388.
[17] PIPELZADEH E, RUDOLPH V, HANSON G, et al. Photoreduction of CO2 on ZIF-8/TiO2 nanocomposites in a gaseous photoreactor under pressure swing[J]. Applied Catalysis B-Environmental, 2017, 218: 672-678.
doi: 10.1016/j.apcatb.2017.06.054
[18] DING Y, XU Y, DING B, et al. Structure induced selective adsorption performance of ZIF-8 nanocrystals in water[J]. Colloidsand Surfaces A-Physicochemicaland Engineering Aspects, 2017, 520: 661-667.
[19] VOROKH A S. Scherrer formula: estimation of error in determining small nanoparticle size[J]. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9(3): 364-369.
[20] LI R, LI W, JIN C, et al. Fabrication of ZIF-8@TiO2 micron composite via hydrothermal method with enhanced absorption and photocatalytic activities in tetracycline degradation[J]. Journalof Alloysand Compoumds, 2020. DOI: 10.1016/j.jallcom.2020.154008.
doi: 10.1016/j.jallcom.2020.154008.
[21] SUN Y, LI X, VIJAYAKUMAR A, et al. Hydrogen generation and degradation of organic dyes by new piezocatalytic 0.7Bi FeO3-0.3Ba TiO3 nanoparticles with proper band alignment[J]. ACS Appiled Materials and Interfaces, 2021, 13(9): 11050-11057.
[22] CHU C Y, HUANG M H. Facet-dependent photocatalytic properties of Cu2O crystals probed by using electron, hole and radical scavengers[J]. Journal of Materials Chemistry A, 2017, 5(29): 15116-15123.
doi: 10.1039/C7TA03848H
[23] CHEN T, ZHANG H, HAN Y, et al. Photocatalytic mechanism and performance of a novel wool flake-BiFeO3 nanosheet-TiO2 (wool-BFO-TiO2) core-shell structured composite photocatalyst[J]. Nanotechnology, 2021.DOI: 10.1088/1361-6528/abf072.
doi: 10.1088/1361-6528/abf072
[24] ZHONG W L, LI C, LIU X M, et al. Liquid phase deposition of flower-like TiO2 microspheres decorated by ZIF-8 nanoparticles with enhanced photocatalytic activity[J]. Microporousand Mesoporous Materials, 2020. DOI: 10.1016/j.micromeso.2020.110401.
doi: 10.1016/j.micromeso.2020.110401.
[25] SHAHRAK M N, GHAHRAMANINEZHAD M, EYDIFARASH M. Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(VI) ions from aqueous solution[J]. Environmental Scienceand Pollution Research, 2017, 24(10): 9624-9634.
[26] TRAN U P N, LE K K A, PHAN N T S. Expanding applications of metal-organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction[J]. ACS Catalysis, 2011, 1(2): 120-127.
doi: 10.1021/cs1000625
[27] RONG P, REN S, JIANG J C, et al. Preparation and photocatalytic properties of metal-doped ZnO nanofilms grown on graphene-coated flexible substrates[J]. Materials, 2020.DOI: 10.3390/ma13163589.
doi: 10.3390/ma13163589
[28] BANFANA A P, YAN X R, WEI X, et al. Polypropylene nanocomposites reinforced with low weight percent graphene nanoplatelets[J]. Composites Part B-Engineering, 2017, 109: 101-107.
doi: 10.1016/j.compositesb.2016.10.048
[29] LIU S, WANG J, YU J. ZIF-8 derived bimodal carbon modified ZnO photocatalysts with enhanced photocatalytic CO2 reduction performance[J]. RSC Advances, 2016, 6(65): 59998-60006.
doi: 10.1039/C6RA11264A
[30] KUMAR P N, DEEPA M, SRIVASTAVA A K. Ag plasmonic nanostructures and a novel gel electrolyte in a high efficiency TiO2/CdS solar cell[J]. Physical Chemistry Chemical Physics, 2015, 17(15): 10040-10052.
doi: 10.1039/C4CP05820H
[31] JING Y, LEI Q, XIA C, et al. Synthesis of Ag and AgCl co-doped ZIF-8 hybrid photocatalysts with enhanced photocatalytic activity through a synergistic effect[J]. RSC Advances, 2020, 10(2): 698-704.
doi: 10.1039/C9RA10100D
[32] RAN J, WANG C, ZHANG J, et al. New insight into polydopamine@ZIF-8 nanohybrids: a zinc-releasing container for potential anticancer activity[J]. Polymers, 2018.DOI: 10.3390/polym10050476.
doi: 10.3390/polym10050476
[33] LI S, CHEN J, ZHENG F, et al. Synthesis of the double-shell anatase-rutile TiO2 hollow spheres with enhanced photocatalytic activity[J]. Nanoscale, 2013, 5(24): 12150-12155.
doi: 10.1039/c3nr04043g
[34] HU C, HUANG Y C, CHANG A L, et al. Amine functionalized ZIF-8 as a visible-light-driven photocatalyst for Cr(VI) reduction[J]. Journal of Collold and Interface Science, 2019, 553:372-381.
[35] ZHAN Y F, LAN J W, SHANG J J, et al. Durable ZIF-8/Ag/AgCl/TiO2 decorated PAN nanofibers with high visible light photocatalytic and antibacterial activities for degradation of dyes[J]. Journal of Alloys and Compounds, 2020.DOI: 10.1016/j.jallcom.2019.153579.
doi: 10.1016/j.jallcom.2019.153579.
[36] DONG P, ZHANG Y, NIE X, et al. A ZIF-8 decorated TiO2 grid-like film with high CO2 adsorption for CO2 photoreduction[J]. Journal of CO2 Utilization, 2018, 24: 369-375.
[37] LIU X, ZHANG J, DONG Y, et al. A facile approach for the synthesis of Z-scheme photocatalyst ZIF-8/g-C3N4 with highly enhanced photocatalytic activity under simulated sunlight[J]. New Journal of Chemistry, 2018, 42(14): 12180-12187.
doi: 10.1039/C8NJ01782D
[38] FAZAELI R, ALIYAN H. Novel hierarchical TiO2@ZIF-8 for photodecolorization of semi-real sample bromothymol blue aqueous solution[J]. Journal of the Iranian Chemical Society, 2019, 16(1): 1-9.
doi: 10.1007/s13738-018-1475-z
[39] YU Y M, XIA J X, CHEN C, et al. One-step synthesis of a visible-light driven C@N-TiO2 porous nanocomposite: Enhanced absorption, photocatalytic and photoelectrochemical performance[J]. Journal of Physics and Chemistry of Solids, 2020. DOI: 10.1016/j.jpcs.2019.109169.
doi: 10.1016/j.jpcs.2019.109169.
[40] YAN D, WU X, PEI J Y, et al. Construction of g-C3N4/TiO2/Ag composites with enhanced visible-light photocatalytic activity and antibacterial properties[J]. Ceramics International, 2020, 46(1): 696-702.
doi: 10.1016/j.ceramint.2019.09.022
[41] LIU Y T, CAI T, WANG L L, et al. Hollow microsphere TiO2/ZnO p-n heterojuction with high photocatalytic performance for 2,4-dinitropheno mineralization[J]. Nano, 2017. DOI: 10.1142/S179329201750076X.
doi: 10.1142/S179329201750076X
[1] 高陆玺, 吕雪川, 张弛, 宋翰林, 高肖汉. 用于印染废水处理的改性絮凝剂合成及其脱色性能[J]. 纺织学报, 2022, 43(07): 121-128.
[2] 钱佳琪, 瞿建刚, 胡啸林, 毛庆辉. 还原氧化石墨烯/粘胶基钒酸铋光催化材料的制备及其性能[J]. 纺织学报, 2022, 43(06): 100-106.
[3] 费建武, 吕明泽, 刘利伟, 王春红, 韩振邦. 基于双层微纳米纤维膜的气液固三相体系构建及其光催化性能[J]. 纺织学报, 2022, 43(06): 37-43.
[4] 王茜, 乔燕莎, 王君硕, 李彦, 王璐. 金属酚醛/两性离子聚合物涂层聚丙烯补片的制备及其抗蛋白吸附性能[J]. 纺织学报, 2022, 43(06): 9-14.
[5] 陈鹏, 廖世豪, 沈兰萍, 王瑄, 王鹏. 聚乳酸/聚酮共混纤维分散染料染色性能[J]. 纺织学报, 2022, 43(05): 12-17.
[6] 刘宇, 谢汝义, 宋亚伟, 齐元章, 王辉, 房宽峻. 涤/棉交织物一浴法轧染工艺[J]. 纺织学报, 2022, 43(05): 18-25.
[7] 韩宜君, 许君, 畅琪琪, 张诚. 纺织基柔性染料敏化太阳能电池的研究进展[J]. 纺织学报, 2022, 43(05): 185-194.
[8] 王成成, 龚筱丹, 王振, 马群旺, 张丽平, 付少海. 高灵敏温感变色微胶囊的制备及其在智能纺织品上的应用[J]. 纺织学报, 2022, 43(05): 38-42.
[9] 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123.
[10] 王东伟, 房宽峻, 刘秀明, 张鑫卿, 安芳芳. 胺化活性红195/聚合物微球的制备及其在棉织物染色中的应用[J]. 纺织学报, 2022, 43(04): 90-96.
[11] 王菊, 张丽平, 王晓春, 杨萌阳. 高疏水性染料的制备及其对超高分子量聚乙烯织物的染色性能[J]. 纺织学报, 2022, 43(04): 97-101.
[12] 何杨, 张瑞萍, 何勇, 范爱民. 激光改性涤纶织物的分散染料染色性能[J]. 纺织学报, 2022, 43(04): 102-109.
[13] 禹凡, 郑涛, 汤涛, 金梦婷, 朱海霖, 于斌. 基于金属有机框架化合物的非织造复合材料制备及其对废水中六价铬的去除[J]. 纺织学报, 2022, 43(03): 139-145.
[14] 成悦, 胡颖捷, 付译鋆, 李大伟, 张伟. 抗菌止血非织造弹性绷带的制备及其性能[J]. 纺织学报, 2022, 43(03): 31-37.
[15] 邓杨, 石现兵, 王涛, 刘利伟, 韩振邦. 负载MIL-53(Fe)的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 58-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .