纺织学报 ›› 2022, Vol. 43 ›› Issue (07): 9-16.doi: 10.13475/j.fzxb.20210507308

• 纤维材料 • 上一篇    下一篇

钛系聚对苯二甲酸乙二醇酯的增黏行为及其性能

林启松, 高峰, 吕汪洋, 陈文兴()   

  1. 浙江理工大学 纺织纤维材料与加工技术国家地方联合工程实验室, 浙江 杭州 310018
  • 收稿日期:2021-05-24 修回日期:2021-11-17 出版日期:2022-07-15 发布日期:2022-07-29
  • 通讯作者: 陈文兴
  • 作者简介:林启松(1993—),男,博士生。主要研究方向为聚酯纤维。
  • 基金资助:
    浙江省重点研发计划项目(2021C01020)

Thickening behaviour and performance of titanium-based polyethylene terephthalate

LIN Qisong, GAO Feng, LÜ Wangyang, CHEN Wenxing()   

  1. National Engineering Laboratory for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2021-05-24 Revised:2021-11-17 Published:2022-07-15 Online:2022-07-29
  • Contact: CHEN Wenxing

摘要:

为了拓宽钛系聚对苯二甲酸乙二醇酯(PET)在聚酯工业丝领域的应用,通过超高效聚合物色谱-多角度激光光散射联用法研究其在不同温度下的增黏行为,建立增黏温度与钛系PET分子质量及其分布的关系,并利用紫外-可见分光光度计和差示扫描量热仪研究增黏PET的色相和热性能。结果表明:钛系PET分子质量随增黏温度的升高而升高,且色相受温度影响明显;增黏所需时间随温度升高而下降,270 ℃反应20 min的钛系PET重均分子量与220 ℃反应10 h时的相当,分子质量升高导致聚酯结晶性能和熔点下降;增黏温度超过熔点后,分子质量分布随温度升高而变窄,且分子质量可达到聚酯工业丝要求,高分子质量窄分布钛系聚酯的研究对其在工业丝领域的应用具有重要意义。

关键词: 聚酯工业丝, 钛催化剂, 熔融缩聚, 增黏行为

Abstract:

To extend the application of titanium-based polyethylene terephthalate (PET) in the manufacturing industrial polyester yarns, advanced polymer chromatography together with multi-angle laser light scattering was employed to research the thickening behaviour under various temperatures. A relationship between polycondensation temperature and molecular weight and its distribution of titanium-based PET were established. UV-Vis spectrophotometer and differential scanning calorimeter were used to study PET coloration with its thermal properties. The results indicate that molecular weight of the titanium-based PET increases as the polycondensation temperatures increase, and its coloration is obviously affected by the temperature. The required time for viscosity increasing decreases as the temperatures rise. The weight-average molecular weight for titanium-based PET obtained at 270 ℃ for 20 min reaction time is similar to that obtained at 220 ℃ for 10 h reaction time. It is shown that the elevated molecular weight leads to a decrease of PET crystalline performance and melt temperature. The molecular weight distribution becomes narrower when polycondensation temperature exceeds the melting temperature, and the molecular weight meets the requirements for industrial polyester yarns. The study on high molecular weight with narrow molecular weight distribution provides useful reference for making industrial polyester yarns.

Key words: industrial polyester yarn, titanium catalyst, melt polycondensation, thickening behaviour

中图分类号: 

  • TS15

图1

不同温度下钛系PET增黏后紫外-可见吸收谱图"

图2

220和270 ℃增黏时钛系PET在410 nm处吸光度随时间的变化"

表1

不同增黏工艺的钛系PET的分子质量相关参数及特性黏度"

反应温度/℃ 特性黏度/(dL·g-1) 黏均分子量/(g·mol-1) 数均分子量/(g·mol-1) 重均分子量/(g·mol-1) 多分散指数
原样 0.676 18 960 22 780 36 970 1.623
210 0.791 22 960 26 780 44 500 1.661
220 0.880 26 150 31 510 51 680 1.640
230 0.959 29 040 42 460 66 280 1.599
240 0.986 30 020 38 090 69 890 1.835
250 1.002 30 610 45 110 78 650 1.743
260 1.104 34 470 35 530 66 030 1.859
270 1.054 32 560 39 590 68 090 1.720
280 1.080 33 560 44 890 68 830 1.533

图3

220和270 ℃钛系PET重均分子量随增黏时间的变化"

图4

270 ℃时不同增黏时间的钛系PET分子质量分布曲线"

表2

270 ℃增黏后钛系PET的分子质量相关参数及特性黏度"

反应时间/min 特性黏度/(dL·g-1) 黏均分子量/(g·mol-1) 数均分子量/(g·mol-1) 重均分子量/(g·mol-1) 多分散指数
0 0.676 18 960 22 780 36 970 1.623
20 0.902 26 930 31 760 53 770 1.693
60 1.054 32 560 39 590 68 090 1.720
100 1.176 37 240 42 300 72 140 1.705
140 1.257 40 390 45 820 81 990 1.789

图5

不同温度下固相缩聚10 h和液相增黏60 min后钛系PET的DSC曲线"

图6

270 ℃液相增黏不同时间后钛系PET的DSC曲线"

[1] SHOTYK W, KRACHLER M, CHEN B. Contamination of Canadian and European bottled waters with antimony from PET containers[J]. Journal of Environmental Monitoring, 2006, 8(2): 288-292.
doi: 10.1039/b517844b
[2] HANSEN H R, PERGANTIS S A. Detection of antimony species in citrus juices and drinking water stored in PET containers[J]. Journal of Analytical Atomic Spectrometry, 2006, 21(8): 731-733.
doi: 10.1039/B606367E
[3] FINELLI L, LORENZETTI C, MESSORI M, et al. Comparison between titanium tetrabutoxide and a new commercial titanium dioxide based catalyst used for the synthesis of poly(ethylene terephthalate)[J]. Journal of Applied Polymer Science, 2004, 92(3): 1887-1892.
doi: 10.1002/app.20171
[4] XIN G, SUN B, WANG W, et al. In-situ formation of BHET/Titanium compound nanocomposite and its catalysis for polyester[J]. Macromolecular Symposia, 2007, 254(1): 173-179.
doi: 10.1002/masy.200750827
[5] STEPIEN' K, MILES C, MCCLAIN A, et al. Biocopolyesters of poly (butylene succinate) containing long-chain biobased glycol synthesized with heterogeneous titanium dioxide catalyst[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12 )
[6] LI X G, SONG G, HUANG M R. Cost-effective sustainable synthesis of high-performance high-molecular-weight poly (trimethylene terephthalate) by eco-friendly and highly active Ti/Mg catalysts[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2181-2195.
[7] YIN M, LI C, GUAN G, et al. Novel catalysts based on titanium dioxide/silicon dioxide for poly (ethylene terephthalate)[J]. Journal of Applied Polymer Science, 2010, 115(4): 2470-2478.
doi: 10.1002/app.30949
[8] 任丽萍, 周文乐, 谢在库. 钛系聚酯催化剂研究技术进展[J]. 合成纤维工业, 2005, 28(6): 48-51.
REN Liping, ZHOU Wenle, XIE Zaiku. Research progress in titanuim-containing catalyst for PET[J]. China Synthetic Fiber Industry, 2005, 28(6): 48-51.
[9] 宋云瑞, 张纪梅, 臧国强. 新型钛系聚酯催化剂的催化性能研究[J]. 合成纤维工业, 2014, 37(6):36-38.
SONG Yunrui, ZHANG Jimei, ZANG Guoqiang. Catalytic performance of novel titanium catalyst in polyethylene terephthalate synthesis[J]. China Synthetic Fiber Industry, 2014, 37(6):36-38.
[10] 章瑛虹, 熊金根, 周文乐, 等.钛系聚酯催化剂:20131051416516[P]. 2013-10-28.
ZHANG Yinghong, XIONG Jingen, ZHOU Wenle, et al. Titanium polyester catalyst: 20131051416516[P]. 2013-10-28.
[11] 王天兵, 胡舒龙, 陈红慧, 等. 环保型钛系催化剂在 PET直纺装置上的应用及探讨[J]. 聚酯工业, 2020, 33(2): 6-9.
WANG Tianbing, HU Shulong, CHEN Honghui, et al. Application and discussion of environmental protection titanium catalyst in pet direct spinning plant[J]. Polyester Industry, 2020, 33(2): 6-9.
[12] SCHEIRS J, LONG T. Mordern polyesters: chemistry and technology of polyesters and copolyesters[M]. Chichester: John Wiley & Sons Ltd, 2003: 166-175.
[13] 陈文兴, 马建平, 王建辉, 等. 涤纶工业丝液相增黏技术的研发[J]. 合成纤维工业, 2013, 36(3): 1-4.
CHEN Wenxing, MA Jianping, WANG Jianhui, et al. Research of liquid-state polycondensation technology for polyester industrial yarn[J]. China Synthetic Fiber Industry, 2013, 36(3): 1-4.
[14] 苑娜娟, 臧国强. 环保型钛系瓶级聚酯切片的研究[J]. 聚酯工业, 2018, 31(2): 1-5.
YUAN Najuan, ZANG Guoqiang. Research of environmental titanium system bottle-grade polyester chip[J]. Polyester Industry, 2018, 31(2): 1-5.
[15] 关震宇, 周文乐, 张玉梅, 等. 基于钛镁催化剂合成瓶用聚酯的动力学研究[J]. 纺织学报, 2021, 42(3): 64-70.
GUAN Zhenyu, ZHOU Wenle, ZHANG Yumei, et al. Kinetic study on synthesis of bottle polyester using Ti-Mg catalyst[J]. Journal of Textile Research, 2021, 42(3): 64-70.
[16] ZHAO Z, WU Y, WANG K, et al. Effect of the trifunctional chain extender on intrinsic viscosity, crystallization behavior, and mechanical properties of poly (ethylene terephthalate)[J]. ACS Omega, 2020, 5(30): 19247-19254.
doi: 10.1021/acsomega.0c02815
[17] YANG J, XIA Z, KONG F, et al. The effect of metal catalyst on the discoloration of poly(ethylene terephthalate) in thermo-oxidative degradation[J]. Polymer Degradation and Stability, 2010, 95(1): 53-58.
doi: 10.1016/j.polymdegradstab.2009.10.009
[18] 刘梅, 刘雄, 陈世昌, 等. 联合超高效聚合物色谱和激光光散射法的聚酯分子质量及其分布测定[J]. 纺织学报, 2016, 37(5): 11-16.
LIU Mei, LIU Xiong, CHEN Shichang, et al. Determination of polyester molecular weight and its distribution by advanced polymer chromatography and laser light scattering detection[J]. Journal of Textile Research, 2016, 37(5): 11-16.
doi: 10.1177/004051756703700102
[19] 朱永群. 粘度法测定PET分子量[J]. 合成纤维, 1988(1): 50-55.
ZHU Yongqun. Determination of PET molecular weight by measurement of viscosity[J]. Synthetic Fiber in China, 1988(1): 50-55.
[20] 卓俊谦. 聚酯瓶及其原料品质探讨[J]. 聚酯工业, 2005, 18(5): 10-14.
ZHUO Junqian. Quality discussion on PET bottle and its raw material[J]. Polyester Industry, 2005, 18(5): 10-14.
[21] MEDELLIN-RODRIGUEZ F, LOPEZ-GUILLEN R, WALDO-MENDOZA M. Solid-state polymerization and bulk crystallization behavior of poly(ethylene terephthalate)(PET)[J]. Journal of Applied Polymer Science, 2000, 75(1): 78-86.
doi: 10.1002/(SICI)1097-4628(20000103)75:1<78::AID-APP9>3.0.CO;2-E
[1] 万苏影, 包建娜, 王滢, 张先明, 陈世昌, 杨志超, 石教学, 陈文兴. 含磷阻燃共聚酯的熔融增黏反应及其动力学[J]. 纺织学报, 2021, 42(11): 9-16.
[2] 靳琳琳, 田俊凯, 李家炜, 戚栋明, 沈晓炜, 邬春涛. 可降解聚羟基乙酸低聚物改性聚酯的合成及其性能[J]. 纺织学报, 2021, 42(01): 16-21.
[3] 陈康, 蒋权, 姬洪, 张阳, 宋明根, 张玉梅, 王华平. 高强型聚酯工业丝在不同温度下的蠕变断裂机制[J]. 纺织学报, 2020, 41(11): 1-9.
[4] 姬洪, 张阳, 陈康, 宋明根, 蒋权, 范永贵, 张玉梅, 王华平. 基于动力学特性的黑色高强聚酯工业丝研发[J]. 纺织学报, 2020, 41(04): 1-8.
[5] 陈佑宁, 张知侠. 乙二醇改性聚乳酸的直接熔融聚合法合成及表征[J]. 纺织学报, 2012, 33(3): 14-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .