纺织学报 ›› 2022, Vol. 43 ›› Issue (08): 107-112.doi: 10.13475/j.fzxb.20210803307

• 染整与化学品 • 上一篇    下一篇

涤纶基纳米铜/还原氧化石墨烯复合材料的制备及其电磁屏蔽性能

杨宏林1(), 项伟1, 董淑秀2   

  1. 1.浙江工业职业技术学院 鉴湖学院, 浙江 绍兴 312000
    2.中国印染行业协会, 北京 100020
  • 收稿日期:2021-08-03 修回日期:2022-01-14 出版日期:2022-08-15 发布日期:2022-08-24
  • 作者简介:杨宏林(1982—),男,副教授,硕士。主要研究方向为清洁染整技术和功能性助剂应用。E-mail: 47108809@qq.com
  • 基金资助:
    浙江省清洁染整技术研究重点实验室基金项目(QJRZ1908);浙江省新苗人才计划项目(2022R454A005)

Preparation and electromagnetic shielding properties of polyester fabric based nano-copper/reduced graphene oxide composites

YANG Honglin1(), XIANG Wei1, DONG Shuxiu2   

  1. 1. Jianhu Institute, Zhejiang Industry Polytechnic College, Shaoxing, Zhejiang 312000, China
    2. China Dyeing and Printing Association, Beijing 100020, China
  • Received:2021-08-03 Revised:2022-01-14 Published:2022-08-15 Online:2022-08-24

摘要:

为制备具有电磁屏蔽性能且质轻、柔软的复合材料,以涤纶织物为基材,采用浸轧法将纳米铜乳液和氧化石墨烯负载到织物中,并通过化学法还原氧化石墨烯,制备涤纶基纳米铜/还原氧化石墨烯复合材料。借助扫描电子显微镜、红外光谱仪、X射线衍射仪等对复合材料进行表征,分析了纳米铜乳液粒径、质量分数及氧化石墨烯质量分数对复合材料电磁屏蔽性能的影响。结果表明:在纳米铜乳液平均粒径为93.7 nm、质量分数为20%,氧化石墨烯质量分数为8%条件下制备的复合材料具有良好的电磁屏蔽性能,其最小反射损耗值为–38.06 dB;与普通涤纶织物相比,复合材料亲水性能提高,手感良好,断裂强力略有降低。

关键词: 纳米铜, 还原氧化石墨烯, 涤纶织物, 复合材料, 电磁屏蔽性能

Abstract:

In order to prepare lightweight and flexible materials with electromagnetic shielding properties, nano copper emulsion and graphene oxide were loaded on polyester fabrics by dip-padding, after which the graphene oxide was reduced by a chemical reduction method to achieve polyester fabrics loaded with nano-copper/reduced graphene oxide composite. The materials were characterized by scanning electron microscopy, Fourier transform infrared spectrometer and X-ray diffraction. The effects of particle size of nano-copper emulsion, mass fraction of nano copper emulsion and graphene oxide on electromagnetic shielding properties of the composite materials were studied. The results show that the composite materials have excellent electromagnetic shielding properties with a minimum reflection loss value of –38.06 dB, with the average particle size of nano copper emulsion being 93.7 nm and mass fraction 20%, and mass fraction of the graphene oxide 8%. Compared with untreated polyester fabric, the composite materials have better wettability and handle, but the breaking strength of composite materials reduced slightly.

Key words: nano-copper, reduced graphene oxide, polyester fabric, composite material, electromagnetic shielding property

中图分类号: 

  • TS195.2

图1

涤纶基纳米铜/还原氧化石墨烯复合材料制备过程示意图"

图2

涤纶织物和复合材料表面形态SEM照片(×2 000)"

表1

涤纶织物和复合材料X射线微区分析"

试样 不同元素含量/%
C O Cu
涤纶织物 56.0 44.0
涤纶基纳米铜复合材料 48.3 42.8 8.9
涤纶基纳米铜/还原氧
化石墨烯复合材料
63.7 35.7 0.6

图3

涤纶织物和复合材料的红外光谱"

图4

涤纶织物和复合材料的 XRD谱图"

表2

纳米铜乳液粒径对涤纶基纳米铜复合材料电磁屏蔽性能的影响"

平均粒径/nm 25.4 93.7 237.8 514.6 1 408.6
最小反射损
耗值/dB
–6.81 –11.22 –10.56 –5.89 –3.65

图5

纳米铜乳液TEM照片"

表3

纳米铜乳液质量分数对复合材料电磁屏蔽性能的影响"

纳米铜乳液质量分数/% 最小反射损耗值/dB
0 –0.04
5 –4.47
10 –6.78
15 –8.56
20 –11.22
25 –11.65

表4

氧化石墨烯质量分数对复合材料电磁屏蔽性能的影响"

氧化石墨烯质量分数/% 最小反射损耗值/dB
0 –11.22
2 –17.67
4 –22.34
6 –30.87
8 –38.06
10 –39.39

表5

不同频率下涤纶织物及复合材料的反射损耗值"

频率/MHz 反射损耗值/dB
涤纶织物 涤纶基纳米铜/还原
氧化石墨烯复合材料
0.300 2.87 –1.90
1.001 0.34 –38.06
30.990 –0.04 –1.10
522.157 0.35 –1.54
706.344 0.01 –2.86
982.625 0.05 –6.80
1 335.651 1.64 –2.72
1 995.655 0.01 –0.30
2 931.941 4.39 –0.11

表6

涤纶织物和复合材料的亲水性、Zeta电位、断裂强力及悬垂系数"

试样 亲水
性/s
Zeta电
位/mV
断裂强
力/N
悬垂系
数/%
涤纶织物 >60 –69.8 463 56.38
涤纶基纳米铜/还原
氧化石墨烯复合材料
4.55 –40.4 451 41.66
[1] 王澜, 韩布新. 当代电磁辐射对身心健康影响的研究概况[J]. 工业卫生与职业病, 2021, 47(4): 344-348.
WANG Lan, HAN Buxin. Overview of the influence of contemporary electromagnetic radiation on physical and mental health[J]. Industrial Healthy & Occupational Disease, 2021, 47(4): 344-348.
[2] 谭学强, 闫宗瑶, 刘佳音, 等. 电磁屏蔽织物的研究新进展[J]. 天津纺织科技, 2021 (2): 57-60.
TAN Xueqiang, YAN Zongyao, LIU Jiayin, et al. Recent progress in research on electromagnetic shielding fabrics[J]. Tianjin Textile Technology, 2021 (2): 57-60.
[3] 2017全国辐射环境质量报告[R]. 北京: 中华人民共和国生态环境部, 2018:10.
Annual report of the national radiation environment[R]. Beijing: The Ministry of Ecology and Environment of the People's Republic of China, 2018:10.
[4] 王欢欢, 赵晓明. 石墨烯柔性复合材料吸波性能的研究[J]. 丝绸, 2021, 58(1):18-26.
WANG Huanhuan, ZHAO Xiaoming. Study on absorbing property of graphene flexible composite material[J]. Journal of Silk, 2021, 58(1):18-26.
[5] JAGANNADHAM K. Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets[J]. Metallurgical and Materials Transaction B, 2012, 43(4):216-234.
[6] SHUAI J, XIONG L Q, ZHU L, et al. Enhanced strength and excellent transport properties of a superaligned carbon nanotubes reinforced copper matrix laminar composite[J]. Composites Part A, 2016, 88:148-155.
doi: 10.1016/j.compositesa.2016.05.027
[7] 王翊, 郭顺德, 刘元军, 等. 铁磁材料/石墨烯复合吸波涂层织物的研究进展[J]. 材料导报, 2021, 35(17):17178-17184.
WANG Yi, GUO Shunde, LIU Yuanjun, et al. Research progress of ferromagnetic material/graphene composite wave absorbing coating fabrics[J]. Materials Reports, 2021, 35(17):17178-17184.
[8] 计瑜, 刘元军, 赵晓明, 等. 电磁屏蔽织物的研究现状[J]. 现代纺织技术, 2021, 30(8):123-133.
JI Yu, LIU Yuanjun, ZHAO Xiaoming, et al. Research status of electromagnetic shielding fabrics[J]. Advanced Textile Technology, 2021, 30(8):123-133.
[9] 黄绪德, 刘欣. 利用维生素 C 和茶多酚还原氧化石墨烯及其表征[J]. 材料导报, 2021, 35(Z1): 83-86.
HUANG Xude, LIU Xin. Reduction of graphene oxide with vitamin C and tea polyphenols and its characterization[J]. Materials Reports, 2021, 35(Z1): 83-86.
[10] SHI Y A, GAO X H, QIU J. Synthesis and strengthened microwave absorption properties of three-dimensional porous Fe3O4/graphene composite foam[J]. Ceramics International, 2019, 45(3):3126-3132.
doi: 10.1016/j.ceramint.2018.10.212
[11] ANKITA H, BIPLAB K D, KYUNGIL K, et al. Microwave absorption and mechanical performance of α-MnO2 nanostructures grown on woven Kevlar fiber/reduced graphene oxide-polyaniline nanofiber array-reinforced polyester resin composites[J]. Composites Part B, 2018, 140: 123-132.
doi: 10.1016/j.compositesb.2017.12.003
[12] 曹机良, 王潮霞. 石墨烯整理蚕丝织物的导电性能[J]. 纺织学报, 2018, 39 (12):84-88.
CAO Jiliang, WANG Chaoxia. Electrical conductivity of silk fabrics finished with graphene[J]. Journal of Textile Research, 2018, 39 (12):84-88.
[13] 方婧, 高晓红, 蔡小斌, 等. 还原氧化石墨烯改性蚕丝织物的抗紫外性能[J]. 印染, 2020, 46(9) :45-48.
FANG Jing, GAO Xiaohong, CAI Xiaobin, et al. UV protection of silk fabric modified with reduced graphene oxide[J]. China Dyeing & Finishing, 2020, 46(9) :45-48.
[14] 虞茹芳, 洪兴华, 祝成炎, 等. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42 (10):126-131, 139.
YU Rufang, HONG Xinghua, ZHU Chengyan, et al. Electrical heating properties of fabrics coated by reduced graphene oxide[J]. Journal of Textile Research, 2021, 42 (10):126-131, 139.
[15] AN B H, PARK B C, YASSI H A, et al. Fabrication of graphene-magnetite multi-granule nanocluster composites for microwave absorption application[J]. Composite Materials, 2019, 53:4097-4103.
doi: 10.1177/0021998319853032
[16] YU Q, WANG Y Y, CHEN P, et al. Reduced graphene oxide-wrapped super dense Fe3O4 nanoparticles with enhanced electromagnetic wave absorption properties[J]. Nanomaterials, 2019, 9(6): 1-11.
doi: 10.3390/nano9010001
[17] 余淼淼. 石墨纳米片及其磁性杂化材料的制备和吸波性能研究[D]. 上海: 东华大学, 2013: 25-28.
YU Miaomiao. Research on preparation and microwave absorption properties of graphite nanosheets and its hybrid magnetic materials[D]. Shanghai: Donghua University, 2013: 25-28.
[18] DUAN Y P, LIU J, ZHANG Y, et al. First-principles calculations of graphenebased polyaniline nano-hybrids for insight of electromagnetic properties and electronic structures[J]. RSC Advances, 2016, 6 (77) : 73915-73923.
doi: 10.1039/C6RA17080C
[19] GAO S, LI H Q, ZHENG L Z, et al. Superhydrophobic and conductive polydimethylsiloxane/titanium dioxide@reduced graphene oxide coated cotton fabric for human motion detection[J]. Cellulose, 2021, 28:7373-7388.
doi: 10.1007/s10570-021-03951-2
[20] 张琪. 石墨烯/铜复合材料的制备及性能研究[D]. 上海: 上海交通大学, 2018:46-51.
ZHANG Qi. Fabrication and properties of graphene/copper composites[D]. Shanghai: Shanghai Jiao Tong University, 2018:46-51.
[21] WANG C, HAN X J, XU P, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material[J]. Applied Physics Letters, 2011, 98:1-3.
[1] 王秋实, 何彩婷, 王珊, 陈美玉, 梁高勇, 孙润军. 织物增强柔性防刺复合材料的研究进展[J]. 纺织学报, 2022, 43(08): 183-188.
[2] 孙晓伦, 陈利, 张一帆, 李默涵. 开孔三维机织复合材料的拉伸性能[J]. 纺织学报, 2022, 43(08): 74-79.
[3] 吴瑕, 姚菊明, 王琰, RIPON Das, JIRI Militky, MOHANAPRIYA Venkataraman, 祝国成. 碳纤维复合材料无人机叶片的仿真与分析[J]. 纺织学报, 2022, 43(08): 80-87.
[4] 竺铝涛, 郝丽, 沈伟, 祝成炎. 基于边界效应模型的玻璃纤维复合材料准脆性断裂性能分析[J]. 纺织学报, 2022, 43(07): 75-80.
[5] 贾雪飞, 庄毅, 唐毓婧, 李姗姗, 时文, 张雷, 刘明, 周江明. 层-层正交角联锁机织物及其复合材料的结构及其层切破坏机制研究[J]. 纺织学报, 2022, 43(07): 81-89.
[6] 郭珊珊, 郝恩全, 李宏杰, 王霖琳, 蒋金华, 陈南梁. 聚氯乙烯膜结构复合材料的光氧老化行为及评价[J]. 纺织学报, 2022, 43(06): 1-8.
[7] 宫学斌, 刘元军, 赵晓明. 热防护用气凝胶材料的研究进展[J]. 纺织学报, 2022, 43(06): 187-196.
[8] 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28.
[9] 薛宝霞, 史依然, 张凤, 秦瑞红, 牛梅. 无卤氧化铁改性涤纶阻燃织物的制备及其性能[J]. 纺织学报, 2022, 43(05): 130-135.
[10] 王艳萍, 陈晓倩, 夏伟, 傅佳佳, 高卫东, 王鸿博, ARTUR Cavaco-Paulo. 角质酶在涤纶织物表面改性中的应用[J]. 纺织学报, 2022, 43(05): 136-142.
[11] 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123.
[12] 邵灵达, 黄锦波, 金肖克, 田伟, 祝成炎. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(04): 68-73.
[13] 何杨, 张瑞萍, 何勇, 范爱民. 激光改性涤纶织物的分散染料染色性能[J]. 纺织学报, 2022, 43(04): 102-109.
[14] 禄倩倩, 唐俊雄, 刘元军, 赵晓明. 碳纳米管基吸波复合材料的制备及其在纺织领域的应用研究进展[J]. 纺织学报, 2022, 43(04): 187-193.
[15] 叶伟, 余进, 龙啸云, 孙启龙, 马岩. 丝瓜络基碳材料的电磁波吸收性能[J]. 纺织学报, 2022, 43(04): 33-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!