纺织学报 ›› 2022, Vol. 43 ›› Issue (08): 167-175.doi: 10.13475/j.fzxb.20201002109

• 机械与器材 • 上一篇    下一篇

基于压电黏合体的电磁选针检测技术

王罗俊1(), 彭来湖2,3, 史伟民2,3, 张伟中1   

  1. 1.浙江机电职业技术学院, 浙江 杭州 310051
    2.浙江理工大学 现代纺织装备技术教育部工程研究中心,浙江 杭州 310018
    3.浙江理工大学 浙江省现代纺织装备技术重点实验室, 浙江 杭州 310018
  • 收稿日期:2020-10-10 修回日期:2022-03-19 出版日期:2022-08-15 发布日期:2022-08-24
  • 作者简介:王罗俊(1993—),男,助教,硕士。主要研究方向为针织选针器控制技术。E-mail: 576657930@qq.com
  • 基金资助:
    国家自然科学基金联合基金重点项目(U1609205);浙江省博士后科研项目特别资助项目(ZJ2020004);浙江省基础公益研究计划项目(LGG19E050018);浙江省机电职业技术学院产教融合重大孵化基金项目(A027121103)

Detection technology for electromagnetic needle selection based on piezoelectric adhesive assembly

WANG Luojun1(), PENG Laihu2,3, SHI Weimin2,3, ZHANG Weizhong1   

  1. 1. Zhejiang Institute of Mechanical & Electrical Engineering, Hangzhou, Zhejiang 310051, China
    2. The Center for Engineering Technology of Modern Textile Machinery & Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Key Laboratory of Modern Textile Machinery & Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2020-10-10 Revised:2022-03-19 Published:2022-08-15 Online:2022-08-24

摘要:

为解决现有针织机电磁选针器在提花作业中存在织物花型失真、次品率难以降低的问题,提出基于压电黏合体的选针动作信号检测方案。通过设计选针器挡板振动特性检测实验,分析挡板受迫振动的信号特性,探索将挡板受迫振动的冲击力信号作为检测选针动作关键数据的可行性;同时制备压电黏合体来感知挡板的微力应变以实现选针动作的冲击力信号的检测;并对所设计的压电黏合体频谱进行分析,对其进行电学建模及振动信号检测电路的设计,提出基于振动信号检测反馈机制的电磁选针半闭环控制策略。结果表明:在现场工况下本控制策略能够实现针对选针器提花动作的实时监测与有效性反馈,为降低提花作业中布匹的次品率提供了技术解决途径。

关键词: 针织机, 压电陶瓷, 电磁选针器, 压电黏合体, 激光测振

Abstract:

Aiming at the distortion of cloth pattern caused by electromagnetic needle selector in jacquard knitting machine and high level defects, a signal detection scheme for needle selection based on a piezoelectric adhesive assembly is proposed. The detection experiment of vibration characteristics of the baffle of needle selector was designed, the signal characteristics of the forced vibration of the baffle was analyzed, and the feasibility of using the impact force signal of the forced baffle vibration was verified as the key data for detecting whether the action of the needle selection is effective. The piezoelectric adhesive assembly was prepared through experiments to sense the strain of micro-force of the baffle to facilitate the detection of the impact force signal associated to the needle selection. Based on the analysis of the frequency spectrum of the designed piezoelectric adhesive assembly, electrical modeling was carried out, the detection circuit of vibrating signal was designed, and a semi-closed loop control strategy of electromagnetic needle selection based on the feedback mechanism of signal detection of the vibration was proposed, which helps achieve the real-time monitoring and effectiveness feedback for the jacquard action of the needle selector under the on-site working conditions. This work provides a technical solution for reducing the defective rate of fabrics in the jacquard operation.

Key words: knitting machine, piezoelectric ceramic, electromagnetic needle selector, piezoelectric adhesive assembly, laser vibration measurement

中图分类号: 

  • TS103.7

图1

电磁选针器驱动模块示意图"

图2

挡板振动检测实验平台"

图3

挡板振动特性检测示意图"

表1

挡板振动位移、速度峰值(动作向下)"

驱动电压/V Vmax/(mm·s–1) Xmax/(10–5 mm)
28 0.431 9 12
26 0.372 5 10
24 0.376 9 11
22 0.313 6 8
20 0.226 7 6
18 0.163 1 4.5

图4

压电黏合体制备关键步骤及物理模型示意图"

图5

压电黏合体(成品)的电导曲线"

图6

压电黏合体等效电路模型拟合曲线"

图7

压电黏合体输出电压波形示意图"

表2

压电黏合体输出电压信号波峰均值"

驱动电压/V 摆击方向 输出信号波峰均值/V
28 向上摆击 0.468 429
向下摆击 0.583 491
26 向上摆击 0.378 945
向下摆击 0.525 889
24 向上摆击 0.274 861
向下摆击 0.478 564
22 向上摆击 0.221 564
向下摆击 0.451 894
20 向上摆击 0.190 332
向下摆击 0.432 151
18 向上摆击 无明显波形
向下摆击 0.345 168

图8

不同驱动电压下压电黏合体输出信号频谱图"

图9

信号检测电路部分示意图"

图10

振动信号检测程序架构及容错机制"

[1] 陈金灿. 中国纺机行业“十三五”发展系列报道之二中国纺机阔步新征程[J]. 纺织机械, 2016(2): 30-31.
CHEN Jincan. China textile machinery industry "Thirteenth Five-Year" development report series 2 China textile machinery strides new journey[J]. Textile Machinery, 2016(2): 30-31.
[2] 王钢飚. 电子提花机传动系统及选针器检测仪研制[D]. 杭州: 浙江大学, 2010:40-42.
WANG Gangbiao. Appliaction of the transmission system of jcaquard and an electronic needle selection tester[D]. Hangzhou: Zhejiang University, 2010:40-42.
[3] 李军, 朱方明, 周炯, 等. 应用频闪原理的选针器频率检测系统设计[J]. 纺织学报, 2017, 38(3):138-142.
LI Jun, ZHU Fangming, ZHOU Jiong, et al. Appliaction of laser displacement sensor to free-form surface measurement[J]. Journal of Textile Research, 2017, 38(3):138-142.
[4] 王罗俊. 电磁选针器的动态特性及控制实现[D]. 杭州: 浙江理工大学, 2019:14-24.
WANG Luojun. Dynamic characteristics and control realization of electromagnetic needle selector[D]. Hangzhou: Zhejiang Sci-Tech University, 2019:14-24.
[5] 梁灿彬, 秦光戎, 梁竹健. 电磁学[M]. 北京: 高等教育出版社, 2012:287-289.
LIANG Canbin, QIN Guangrong, LIANG Zhujian. Electromagnetism[M]. Beijing: Higher Education Press, 2012: 287-289.
[6] 孟宗, 刘彬. 激光多普勒扭矩非接触测量的研究[J]. 光电工程, 2006(6):88-91.
MENG Zong, LIU Bin. Torque non-contact measurement based on laser doppler effect[J]. Opto-Electronic Engineering, 2006(6):88-91.
[7] 左爱斌, 于梅, 马明德, 等. 高频振动外差激光干涉仪研究[J]. 科技导报, 2006(11):13-14.
ZUO Aibin, YU Mei, MA Mingde, et al. Research of heterodyne interferometer of high-frequency vibra-tion[J]. Science & Technology Review, 2006(11):13-14.
[8] 刘杰坤, 马修水, 马勰. 激光多普勒测振仪研究综述[J]. 激光杂志 2014, 35(12):1-5.
LIU Jiekun, MA Xiushui, MA Xie. Review of laser doppler vibrometer[J]. Laser Journal, 2014, 35(12):1-5.
[9] 齐洪东, 杨涛, 岳高铭, 等. 微型压电陶瓷振动发电技术研究综述[J]. 传感器与微系统, 2007(5):1-4.
QI Hongdong, YANG Tao, YUE Gaoming, et al. Survey on research of miniature vibration generation technology based on piezoelectric ceramics[J]. Transducer and Microsystem Technologies, 2007(5):1-4.
[10] 孙艾薇. 结构健康监测中的压电传感技术研究[D]长沙: 中南大学, 2010:3-4.
SUN Aiwei. Research on piezoelectric sensing technology in structural health monitoring[D]. Changsha: Central South University, 2010:3-4.
[11] 黄家荣, 叶晓靖. 压电陶瓷电特性测试与分析[J]. 电子技术应用, 2016, 42(8):16-20.
HUANG Jiarong, YE Xiaojing. Testing and analysis of PZT electrical characteristic[J]. Application of Electronic Technique, 2016, 42(8):16-20.
[12] 周秀珍, 肖雷. 基于快速傅里叶变换的实时频谱分析方法研究[J]. 信息通信, 2018(8):21-22.
ZHOU Xiuzhen, XIAO Lei. Research on real-time spectrum analysis method based on fast fourier trans-form[J]. Information & Communications, 2018(8):21-22.
[13] 叶飞, 吴加权, 张馨予, 等. 基于谐波窗函数的桥梁振动信号分解与重构[J]. 振动与冲击, 2018, 37(16):234-240.
YE Fei, WU Jiaquan, ZHANG Xinyu, et al. Decomposition and reconstruction of bridge vibration signals based on the harmonic window function[J]. Journal of Vibration and Shock, 2018, 37(16):234-240.
[14] 袁帅. 基于压电效应的环境俘能技术研究[D]. 南京: 南京邮电大学, 2015:7-11.
YUAN Shuai. Research on technology of environmental energy harvesting based on piezoelectric effect[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2015:7-11.
[15] SIROHI J, CHOPRA I. Fundamental understanding of piezoelectric strain sensors[J]. Journal of Intelligent Material Systems and Structures, 2000, 11(4):246-257.
doi: 10.1106/8BFB-GC8P-XQ47-YCQ0
[16] 谢静. 新型电荷放大器设计[D]. 西安: 西安理工大学, 2008:10-14.
XIE Jing. Design of a new charge amplifier[J]. Xi'an: Xi'an University of Technology, 2008:10-14.
[17] 张微, 高国旺, 李汉兴, 等. 新型压电式传感器前置放大电路的设计[J]. 电子测试, 2010(6):10-14.
ZHANG Wei, GAO Guowang, LI Hanxing, et al. Design of preamplifier circuit based on novel piezoelectric sensor[J]. Electronic Test, 2010(6):10-14.
[1] 戴宁, 彭来湖, 胡旭东, 崔英, 钟垚森, 王越峰. 纬编针织机织针自由状态下固有频率测试方法[J]. 纺织学报, 2020, 41(11): 150-155.
[2] 汪松松, 彭来湖, 戴宁, 沈春娅, 胡旭东. 基于工业互联网的针织机械互联互通结构研究[J]. 纺织学报, 2020, 41(01): 165-173.
[3] 袁嫣红 徐文炜 彭来湖. 基于Ansys的磁保持电磁选针器瞬态仿真[J]. 纺织学报, 2018, 39(12): 124-130.
[4] 袁嫣红 马天宇 项宏年. 电磁选针器实时检测系统[J]. 纺织学报, 2018, 39(03): 143-147.
[5] 赖森财 任雯 刘永桂. 嵌入式电子贾卡控制系统设计[J]. 纺织学报, 2016, 37(10): 135-140.
[6] 霍铖宇 华强 卢达 范龙保 李新 徐刚. 基于虚拟仪器的针织机械用高速电磁阀测试系统[J]. 纺织学报, 2011, 32(10): 134-0.
[7] 汪木兰;朱昊;左健民. 针织机电气控制系统抗干扰设计[J]. 纺织学报, 2007, 28(4): 111-115.
[8] 贾卫靖;刘云斌;袁嫣红;李志祥. 电子提花机的压电陶瓷传动原理与测试[J]. 纺织学报, 2006, 27(11): 48-51.
[9] 汪德潢. 压电陶瓷片式选针装置结构与工作原理[J]. 纺织学报, 2003, 24(06): 52-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!