纺织学报 ›› 2022, Vol. 43 ›› Issue (08): 189-196.doi: 10.13475/j.fzxb.20210400108

• 综合述评 • 上一篇    下一篇

婴儿被服热舒适性研究进展

江舒1, 李俊1,2()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
  • 收稿日期:2021-04-01 修回日期:2021-07-07 出版日期:2022-08-15 发布日期:2022-08-24
  • 通讯作者: 李俊
  • 作者简介:江舒(1995—),女,博士生。主要研究方向为服装舒适性与功能。
  • 基金资助:
    中央高校基本科研业务费专项资金项目(2232022G-08);上海市科学技术委员会“科技创新行动计划”“一带一路”国际合作项目(21130750100)

Research progress on thermal comfort of infant bedding

JIANG Shu1, LI Jun1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of;Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2021-04-01 Revised:2021-07-07 Published:2022-08-15 Online:2022-08-24
  • Contact: LI Jun

摘要:

为促进婴儿热生理舒适,推动婴儿被服热舒适性测评方法及理论体系的建立,回顾了婴儿被服热舒适性的相关研究,在分析婴儿与环境热传递机制的基础上,讨论了婴儿被服热舒适性的影响因素及测评方法,并根据当前研究现状提出了发展方向。研究表明:婴儿主要依靠传导、对流、辐射显热热交换维持人体热平衡,其体表热传递系数明显大于成人;被服的过高隔热、头部覆盖与俯卧姿势可能造成睡眠时婴儿的热应激反应;目前,婴儿暖体假人被认为是研究被服热舒适性最理想的装置,未来的发展应聚焦于婴儿被服热湿传递过程、使用数值模拟方法研究婴儿体表热传递及建立婴儿体温调节模型等方面。

关键词: 婴儿被服, 热舒适, 热应激, 婴儿暖体假人, 热阻

Abstract:

Considering the improvement of the thermal physiological comfort of infants, as well as the establishment of infant bedding thermal comfort evaluation system, this paper reviewed previous researches on the thermal comfort of infant bedding. Based on the analysis of the heat transfer mechanism between the infants and the environment, the influencing factors and test methods for the thermal comfort of the infant bedding were discussed. Besides, the research trend in the field was proposed. Previous researches revealed that the thermal equilibrium of the infants was achieved mainly through the conductive, convective, radiative heat exchange between the surface of the infants and the environment. Moreover, the heat transfer coefficients at the infant skin surface were significantly greater than those of the adults. Excessive thermal protection given by the infant bedding, head covering and prone posture of the infants were likely to cause heat stress for the infants during sleep. Baby thermal manikin was considered as the most ideal device for the research on thermal comfort of infant bedding. In the future, the studies are supposed to focus on the heat and mass transfer process of bedding, numerical simulation on the mechanism of the heat transfer between infants and the environment, and the establishment of the thermoregulation model for infants.

Key words: infant bedding, thermal comfort, heat stress, baby thermal manikin, thermal insulation

中图分类号: 

  • TS941.73

图1

婴儿体表至环境的干热传递机制"

图2

折叠方式"

表1

典型的婴儿暖体假人"

来源 制造单位 假人参数 优缺点
文献[6] 隆德大学
(瑞典)
质量:1 003 g;表面积:0.09 m2;身高:40 cm
材料:聚酯塑料覆盖聚酯泡沫
8区段
优点:头部与躯干均分为前后2个区段,考虑了传导与对流辐射热传递的差异
缺点:无法测量蒸发热损失
文献[43] 隆德大学
(瑞典)
质量:5 700 g;表面积:0.311 m2;身高:60 cm
材料:聚酯塑料覆盖聚酯泡沫
8区段
优点:头部与躯干均分为前后2区段,考虑了传导与对流辐射热传递的差异
缺点:无法测量蒸发热损失
文献[42] 亚眠大学
(法国)
质量:1 400 g;表面积:0.15 m2
材料:铜制,涂覆亚光黑色
6区段
优点:可考察各区段干热损失,被较早地用于研究头部覆盖、姿势等因素带来的影响
缺点:区段分割较少;无法测量蒸发热损失
文献[34] 亚眠大学
(法国)
质量:900 g;表面积:0.086 m2
材料:铜制,涂覆亚光黑色
6区段
可覆盖棉质皮肤衣
优点:出汗孔多,可测量蒸发热损失
缺点:区段分割较少;棉质皮肤衣影响湿阻测量结果的准确性
文献[45] 文化女子
大学(日本)
表面积:0.47 m2(含头),0.40 cm2(不含头);身高:84 cm
材料:玻璃纤维外壳、加固塑料
16区段
32个出汗孔,出汗量为2942 184 g/(h·m2)
覆盖棉针织套装与Gore-Tex皮肤衣
优点:区段划分多,可考察局部散热;Gore-Tex皮肤衣保证水以气态形式散出,提高湿阻测量结果准确性
缺点:没有头部区段,无法测量帽子或全身总热损失;难以模拟低水平出汗

图3

典型的婴儿暖体假人"

[1] WILLIAMS S M, TAYLOR B J, MITCHELL E A. Sudden infant death syndrome: insulation from bedding and clothing and its effect modifiers[J]. International Journal of Epidemiology, 1996, 25(2): 366-370.
doi: 10.1093/ije/25.2.366
[2] STANTON A N. Overheating and cot death[J]. Lancet, 1984, 3: 1199-1201.
[3] SUNDERLAND R, EMERY J L. Febrile convulsions and cot death[J]. Lancet, 1981, 2: 176-178.
[4] MITCHELL E A, THOMPSON J M D, BECROFT D M O, et al. Head covering and the risk for SIDS: findings from the New Zealand and German SIDS case-control studies[J]. Pediatrics, 2008, 121(6): 1478-1483.
[5] L'HOIR M P, ENGELBERTS A C, WELL G T, et al. Risk and preventive factors for cot death in The Netherlands, a low-incidence country[J]. European Journal of Pediatrics, 1998, 157(8): 681-688.
doi: 10.1007/s004310050911
[6] SARMAN I, BOLIN D, HOLMÉR I, et al. Assessment of thermal conditions in neonatal care: use of a manikin of premature baby size[J]. American Journal of Perinatology, 1992, 9(4): 239-246.
doi: 10.1055/s-2007-994780
[7] FUKAZAWA T, IKEDA S, SUK KIM S, et al. Seasonal clothing variation and thermal resistance of clothing ensembles of infants living in Kyushu[J]. Journal of Home Economics of Japan, 2009, 60(7): 635-643.
[8] WATSON L, POTTER A, GALLUCCI R, et al. Is baby too warm? the use of infant clothing, bedding and home heating in Victoria, Australia[J]. Early Human Development, 1998, 51(2): 93-107.
doi: 10.1016/S0378-3782(97)00085-6
[9] FUKAZAWA T, TOCHIHARA Y. The thermal manikin: a useful and effective device for evaluating human thermal environments[J]. Journal of the Human-Environment System, 2015, 18(1): 21-28.
doi: 10.1618/jhes.18.021
[10] WILSON C, NIVEN B, LAING R. Estimating thermal resistance of the bedding assembly from thickness of materials[J]. International Journal of Clothing Science and Technology, 1999, 11(5): 262-276.
doi: 10.1108/09556229910297536
[11] WILSON C A, LAING R M, NIVEN B E. Estimating dry thermal resistance of multiple-layer bedding materials-re-examining the problem[J]. Journal of the Human-Environment System, 1999, 2(1): 69-85.
doi: 10.1618/jhes.2.69
[12] KERSLAKE M. The insulation provided by infants bedclothes[J]. Ergonomics, 1991, 34(7): 893-907.
doi: 10.1080/00140139108964833
[13] GINALSKI M, NOWAK A, WROBEL L. Modelling of heat and mass transfer processes in neonatology[J]. Biomedical Materials, 2008, 3: 1-11.
[14] GINALSKI M, NOWAK A, WROBEL L. A combined study of heat and mass transfer in a double-walled infant incubator[J]. Medical Engineering and Physics, 2007, 29(5): 531-541.
doi: 10.1016/j.medengphy.2006.07.011
[15] MCCULLOUGH E A, ZBIKOWSKI P J, JONES B W. Measurement and prediction of the insulation provided by bedding systems[J]. ASHREA Transactions, 1987, 93(1): 1055-1068.
[16] FLEMING P, BERRY J, GILBERT R, et al. Bedding and sleeping position in the sudden infant death syndrome[J]. British Medical Journal, 1990, 301: 871-872.
[17] MITCHELL E A, WILLIAMS S M, TAYLOR B J. Use of duvets and the risk of sudden infant death synd-rome[J]. Archives of Disease in Childhood, 1999, 81(2): 117-119.
doi: 10.1136/adc.81.2.117
[18] WILSON C, LAING R, NIVEN B. Multiple-layer bedding materials and the effect of air spaces on 'wet' thermal resistance of dry materials[J]. Journal of the Human-Environment System, 2000, 4(1): 23-32.
doi: 10.1618/jhes.4.23
[19] PONSONBY A L, DWYER T, COUPER D, et al. Association between use of a quilt and sudden infant death syndrome: case-control study[J]. British Medical Journal, 1998, 316: 195-196.
[20] SARA A, PETE B, JOHN H, et al. Is the mattress important in helping babies keep warm? paradoxical effects of a sleeping surface with negligible thermal resistance[J]. Acta Peadiatrica, 2009, 96(2): 199-205.
[21] LIN Z, DENG S. A study on the thermal comfort in sleeping environments in the subtropics-measuring the total insulation values for the bedding systems commonly used in the subtropics[J]. Building and Environment, 2008, 43(1): 905-916.
doi: 10.1016/j.buildenv.2007.01.027
[22] GLOVER WILLIAMS A, FINLAY F. Can infant sleeping bags be recommended by medical professionals as protection against sudden infant death synd-rome?[J]. Archives of Disease in Childhood, 2018, 104: 1-2.
doi: 10.1136/archdischild-2018-315176
[23] ELABBASSI E B, CHARDON K, BACH V R, et al. Head insulation and heat loss in naked and clothed newborns using a thermal mannequin[J]. Medical Physics, 2002, 29(6): 1090-1096.
doi: 10.1118/1.1481518
[24] WILSON C A, CHU M S. Thermal insulation and SIDS-an investigation of selected 'Eastern' and 'Western' infant bedding combinations[J]. Early Human Development, 2005, 81(8): 695-709.
doi: 10.1016/j.earlhumdev.2005.05.003
[25] HULL D, MCARTHUR A J, PRITCHARD K, et al. Metabolic rate of sleeping infants[J]. Archives of Disease in Childhood, 1996, 75(4): 282-287.
doi: 10.1136/adc.75.4.282
[26] TOURULA M, FUKAZAWA T, ISOLA A, et al. Evaluation of the thermal insulation of clothing of infants sleeping outdoors in Northern winter[J]. European Journal of Applied Physiology, 2011, 111(4): 633-640.
doi: 10.1007/s00421-010-1686-1
[27] RISING R, DURO D, CEDILLO M, et al. Daily metabolic rate in healthy infants[J]. Journal of Pediatrics, 2003, 143(2): 180-185.
doi: 10.1067/S0022-3476(03)00362-7
[28] FUKAZAWA T, ANDO T, IKEDA S, et al. Convective heat transfer coefficient from baby is larger than that from adult[C]//Proceedings of 13th International Conference on Environmental Ergonomics. Wollongong: University of Wollongong, 2009: 318-322.
[29] BELGHAZI K, TOURNEUX P, ELABBASSI E B, et al. Effect of posture on the thermal efficiency of a plastic bag wrapping in neonate: assessment using a thermal “sweating” mannequin[J]. Medical Physics, 2006, 33(3): 637-644.
doi: 10.1118/1.2163248
[30] ELABBASSI E B, CHARDON K, TELLIEZ F, et al. Influence of head position on thermal stress in newborns: simulation using a thermal mannequin[J]. Journal of Applied Physiology, 2002, 93(4): 1275-1279.
doi: 10.1152/japplphysiol.00336.2002
[31] NELSON E A S, TAYLOR B J, WEATHERALL I L. Sleeping position and infant bedding may predispose to hyperthermia and the sudden infant death syndrome[J]. Lancet, 1989, 333(8631): 199-201.
doi: 10.1016/S0140-6736(89)91211-7
[32] BOLTON D P G, NELSON E A S, TAYLOR B J, et al. Thermal balance in infants[J]. Journal of Applied Physiology, 1996, 80(6): 2234-2242.
doi: 10.1152/jappl.1996.80.6.2234
[33] TSOGT B, MANASEKI-HOLLAND S, POLLOCK J, et al. Thermoregulatory effects of swaddling in Mongolia: a randomised controlled study[J]. Archives of Disease in Childhood, 2015, 64(16): 152-160.
[34] BELGHAZI K, ELABBASSI E B, TOURNEUX P, et al. Assessment of whole body and regional evaporative heat loss coefficients in very premature infnats using a thermal mannequin: influence of air velocity[J]. Medical Physics, 2005, 32(3): 752-758.
doi: 10.1118/1.1862074
[35] SULYOK E, JÉQUIER E, RYSER G. Effect of relative humidity on thermal balance of the newborn infant[J]. Biology of the Neonate, 1972, 21(3): 210-218.
[36] OKKEN A, BLIJHAM C, FRANZ W, et al. Effects of forced convection of heated air on insensible water loss and heat loss in preterm infants in incubators[J]. J Pediatr, 1982, 101(1): 108-112.
[37] SARMAN I, CAN G, TUNELL R. Rewarming preterm infants on a heated, water filled mattress[J]. Archives of Disease in Childhood, 1989, 64(5): 687-692.
doi: 10.1136/adc.64.5.687
[38] SARMAN I, TUNELL R. Providing warmth for preterm babies by a heated, water filled mattress[J]. Archives of Disease in Childhood, 1989, 64(1): 29-33.
doi: 10.1136/adc.64.1_Spec_No.29
[39] SARMAN I. Thermal responses and heart rates of low-birth-weight premature babies during daily care on a heated, water-filled mattress[J]. Acta Peadiatrica: Promoting Child Health, 1992, 81(1): 15-20.
[40] SAUSENG W, KERBL R, THALLER S, et al. Baby sleeping bag and conventional bedding conditions: comparative investigations by infrared thermography[J]. Klinische Padiatrie, 2011, 223(5): 276-279.
doi: 10.1055/s-0031-1277142
[41] RODRÍGUEZ A, VARGAS E, PERDOMO CHARRY O. Breathing and temperature detection using thermal images in infants[J]. Vision Electronica, 2018. DOI: org/10.14483/issn, 2248-4728.
doi: org/10.14483/issn, 2248-4728
[42] ELABBASSI E B, BACH V. Assessment of dry heat exchanges in newborns: influence of body position and clothing in SIDS[J]. Journal of Applied Physiology, 2001, 91(1): 51-56.
doi: 10.1152/jappl.2001.91.1.51
[43] FUKAZAWA T, TOCHIHARA Y, TSUNEYUKI Y, et al. Usability of a newly developed thermal manikin of infant to assess thermal stress in various environ-ments[C]//Proceedings of the 11th International Conference of Environmental Ergonomics. Lund: Lund University, 2005: 618-623.
[44] KUKLANE K, SANDSUND M, REINERTSEN R E, et al. Comparison of thermal manikins of different body shapes and size[J]. European Journal of Applied Physiology, 2004, 92(6): 683-688.
doi: 10.1007/s00421-004-1116-3
[45] KANG I H, TAMURA T. A study on the development of an infant-sized movable sweating thermal manikin[J]. Journal of the Human-Environment System, 2001, 5(1): 49-56.
doi: 10.1618/jhes.5.49
[46] WILSON C A, LAING R M, TAMURA T. Intrinsic ″dry″ thermal resistance of dry infant bedding during use[J]. International Journal of Clothing Science and Technology, 2004, 16(3): 310-323.
doi: 10.1108/09556220410527237
[1] 吴国珊, 刘何清, 吴世先, 游波, 宋小鹏. 不同环境下个体通风服的制冷量[J]. 纺织学报, 2021, 42(10): 139-145.
[2] 潘梦娇, 卢业虎, 王敏. 基于四节点体温调节模型的睡眠系统舒适性预测[J]. 纺织学报, 2021, 42(09): 150-155.
[3] 柳洋, 夏兆鹏, 王亮, 范杰, 曾强, 刘雍. 医用防护服的发展现状及趋势[J]. 纺织学报, 2021, 42(09): 195-202.
[4] 苏文桢, 卢业虎, 王方明, 宋文芳. 新型充气夹克的研制与保暖性能评价[J]. 纺织学报, 2020, 41(05): 140-145.
[5] 郑晴, 王宏付, 柯莹, 李爽. 相变降温矿工服的设计与评价[J]. 纺织学报, 2020, 41(03): 124-129.
[6] 肖平, 张昭华, 周莹, 刘佳锴, 唐颢源. 手臂活动角度对服装局部热阻的影响[J]. 纺织学报, 2020, 41(02): 109-114.
[7] 苏文桢, 宋文芳, 卢业虎, 杨秀月. 充气防寒服的保暖性能[J]. 纺织学报, 2020, 41(02): 115-118.
[8] 刘玉萍, 卢业虎, 王来力. 被服系统热舒适性研究进展[J]. 纺织学报, 2020, 41(01): 190-196.
[9] 胡紫婷, 郑晓慧, 冯铭铭, 王英健, 刘莉, 丁松涛. 衣下空气层对透气型防护服热阻和湿阻的影响[J]. 纺织学报, 2019, 40(11): 145-150.
[10] 刘林玉, 陈诚毅, 王珍玉, 祝焕, 金艳苹. 消防服多层织物的热湿舒适性[J]. 纺织学报, 2019, 40(05): 119-123.
[11] 赵蒙蒙, 柯莹, 王发明, 李俊. 通风服热舒适性研究现状与展望[J]. 纺织学报, 2019, 40(03): 183-188.
[12] 邓辉 师云龙 胡源盛 钱晓明 范金土. 开放式局部热阻测试系统的实现[J]. 纺织学报, 2018, 39(09): 127-133.
[13] 张文欢 钱晓明 师云龙 范金土 牛丽. 服装局部热阻与总热阻的动静态关系及其模型[J]. 纺织学报, 2018, 39(07): 111-115.
[14] 师云龙 钱晓明 梁肖肖 张文欢 邓辉 王立晶 范金土 . 仿人体出汗比例的 Walter 暖体假人皮肤制备[J]. 纺织学报, 2018, 39(05): 103-107.
[15] 赵蒙蒙 宋晓霞. 通风服装对人体热舒适的影响[J]. 纺织学报, 2017, 38(10): 94-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!