纺织学报 ›› 2022, Vol. 43 ›› Issue (08): 74-79.doi: 10.13475/j.fzxb.20210505207

• 纺织工程 • 上一篇    下一篇

开孔三维机织复合材料的拉伸性能

孙晓伦1,2, 陈利1,2, 张一帆1,2(), 李默涵1,2   

  1. 1.天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
    2.天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2021-05-21 修回日期:2021-12-15 出版日期:2022-08-15 发布日期:2022-08-24
  • 通讯作者: 张一帆
  • 作者简介:孙晓伦(1996—),男,硕士生。主要研究方向为纺织复合材料结构设计及力学性能评价。
  • 基金资助:
    国家自然科学基金项目(11802203);天津市自然科学基金项目(18JCQNJC73200);装备预研重点实验室基金项目(61429040403);天津市科技计划项目(18ZXJMTG00190);天津市高等学校创新团队培养计划项目(TD13–5043)

Tensile properties of 3-D woven composites with holes

SUN Xiaolun1,2, CHEN Li1,2, ZHANG Yifan1,2(), LI Mohan1,2   

  1. 1. Key Laboratory of Advanced Textile Composite Materials, Ministry of Education, Tiangong University, Tianjin 300387, China
    2. College of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2021-05-21 Revised:2021-12-15 Published:2022-08-15 Online:2022-08-24
  • Contact: ZHANG Yifan

摘要:

为研究开孔尺寸对三维机织复合材料拉伸力学行为、破坏模式以及失效机制的影响规律,设计了3种不同孔径的三维机织复合材料试样,利用非接触全场应变测试系统和显微图像技术进行表征。结果表明:6、10、14 mm 的孔径对三维机织复合材料的拉伸模量几乎没有影响,开孔后全截面拉伸强度分别下降35.6%、44.5%和51.8%,但开孔后的净截面拉伸强度基本相同,与未开孔试样相比,平均拉伸强度下降约22.4%;未开孔试样的全场应变呈现均匀分布,而开孔试样在孔左右两侧呈现出应变集中;开孔试样的断口形貌相似,主要表现为经纱的断裂,并伴随有部分纱线的抽拔以及层间开裂。

关键词: 三维机织复合材料, 开孔, 拉伸性能, 孔径, 应力集中, 失效机制

Abstract:

In order to investigate the effect of aperture on the tensile mechanical behavior, damage mode and failure mechanism of three-dimensional(3-D)woven composites with holes, three types of 3-D woven composite samples with different hole apertures were designed and digital image correlation system and micro-image technique were used for characterization. The results showed that the dimension of holes had little effect on the tensile modulus of 3-D woven composites, but the tensile strengths of the cross section of notched specimens with 6 mm, 10 mm and 14 mm holes decreased by 35.6%, 44.5% and 51.8% respectively. Their tensile strengths of the net section however were almost the same, and the average tensile strength decreased by approximately 22.4% compared with the unnotched samples. The strain distributions of the unnotched specimen were uniform, while the strains of the notched specimens were mainly located at the left and right sides of the open holes. The fracture morphologies of the three notched samples were similar, and the main damage modes were the warp fracture along with fiber pull-out and interlaminar cracking.

Key words: three-dimensional woven composite, open hole, tensile property, aperture, stress concentration, failure mechanism

中图分类号: 

  • TB332

表1

碳纤维性能参数"

材料 密度/
(g·cm–3)
线密
度/tex
拉伸强
度/MPa
弹性模
量/GPa
上浆
率/%
TG800HX–12K 1.8 500 5 678 290.0 1.5
TG800HXC–6K 1.8 250 5 678 290.0 1.5
TDE–86 1.2 80 3.5

图1

三维机织结构示意图"

表2

预制体与复合材料参数"

纱线
系统
纱线
线密度/
tex
织物密
度/
(根·cm–1)
纱线
层数
各纱线
纤维体
积含量/
复合材
料厚度/
mm
纤维
体积
含量/
纬纱 1 000 4 5 26.02
衬经纱 1 000 4 4 20.82 4.26 54.63
接结经纱 250 4 4 7.79

图2

开孔三维机织复合材料拉伸实验过程"

图3

开孔试样截面图"

图4

三维机织复合材料拉伸的应力–应变曲线"

图5

三维机织复合材料的平均最大应变"

图6

三维机织复合材料拉伸应变云图"

图7

三维机织复合材料拉伸强度及模量"

图8

三维机织复合材料的断口形态"

[1] 梁双强, 陈革, 周其洪. 开孔三维编织复合材料的压缩性能[J]. 纺织学报, 2020, 41(5):79-84.
LIANG Shuangqiang, CHEN Ge, ZHOU Qihong. Compression property of notched 3-D braided composites[J]. Journal of Textile Research, 2020, 41(5):79-84.
[2] 刘俊岭, 孙颖, 陈利. 含变异结构的三维机织复合材料的轴向拉伸性能[J]. 纺织学报, 2019, 40(12):162-168.
LIU Junling, SUN Ying, CHEN Li. Axial tensile properties of three-dimensional woven composites with variant structure[J]. Journal of Textile Research, 2019, 40(12):162-168.
[3] LI Zhonggui, LI Diansen, ZHU Hao, et al. Mechanical properties prediction of 3D angle-interlock woven composites by finite element modeling method[J]. Materials Today Communications, 2020. DOI: 10.1016/j.mtcomm.2019.100769.
doi: 10.1016/j.mtcomm.2019.100769
[4] GUO Qiwei, ZHANG Yifan, LI Diansen, et al. Experimental and numerical investigation of open-hole tensile properties and damage mechanisms of 3D woven composites under weft-loading[J]. Thin-Walled Structures, 2021. DOI: 10.1016/j.tws.2021.107455.
doi: 10.1016/j.tws.2021.107455
[5] ZHANG Yifan, GUO Qiwei, CHEN Xiaoming, et al. Effect of apertures on tensile property of warp-reinforce 2.5D woven composites notched plates[J]. Composite Structures, 2020. DOI: 10.1016/j.compstruct.2020.112693.
doi: 10.1016/j.compstruct.2020.112693
[6] CASTANIÉ B, CRÉZÉ S, BARRAU J J, et al. Experimental analysis of failures in filled hole compression tests of carbon/epoxy laminate[J]. Composite Structures, 2010, 92(5): 1192-1199.
doi: 10.1016/j.compstruct.2009.10.008
[7] SKET F, ENFEDAQUE A, DÍAZ LÓPEZ C, et al. X-ray computed tomography analysis of damage evolution in open hole carbon fiber-reinforced laminates subjected to in-plane shear[J]. Composites Science and Technology, 2016, 133: 40-50.
doi: 10.1016/j.compscitech.2016.06.012
[8] ALMEIDA J H S, BITTRICH L, SPICKENHEUER A. Improving the open-hole tension characteristics with variable-axial composite laminates: optimization, progressive damage modeling and experimental observations[J]. Composites Science and Technology, 2020. DOI: 10.1016/j.compscitech.2019.107889.
doi: 10.1016/j.compscitech.2019.107889
[9] 关志东, 黎增山, 刘德博, 等. 复合材料层板开孔压缩损伤分析[J]. 复合材料学报, 2012, 29(3):167-172.
GUAN Zhidong, LI Zengshan, LIU Debo, et al. Damage analysis of open-hole compression laminates[J]. Acta Materiae Compositae Sinica, 2012, 29(3): 167-172.
[10] 黎增山, 关志东, 何为, 等. 复合材料层板开孔拉伸损伤分析[J]. 复合材料学报, 2012, 29(1):169-175.
LI Zengshan, GUAN Zhidong, HE Wei, et al. Damage analysis of open-hole tension laminates[J]. Acta Materiae Compositae Sinica, 2012, 29(1): 169-175.
[11] 李汝鹏, 陈磊, 刘学术, 等. 基于渐进损伤理论的复合材料开孔拉伸失效分析[J]. 航空材料学报, 2018, 38(5): 138-146.
LI Rupeng, CHEN Lei, LIU Xueshu, et al. Progressive damage based failure analysis of open-hole composite laminates under tension[J]. Journal of Aeronautical Materials, 2018, 38(5):138-146.
[12] MA Zhaoyang, CHEN Jianlin, YANG Qingda, et al. Progressive fracture analysis of the open-hole composite laminates: experiment and simulation[J]. Composite Structures, 2021. DOI: 10.1016/j.compstruct.2021.113628.
doi: 10.1016/j.compstruct.2021.113628
[13] 王翔华, 成玲, 张一帆, 等. 三维机织复合材料板簧式起落架结构设计及其有限元分析[J]. 纺织学报, 2020, 41(3):68-77.
WANG Xianghua, CHENG Ling, ZHANG Yifan, et al. Structural design and finite element analysis of landing gear with leaf spring made of 3-D woven composite[J]. Journal of Textile Research, 2020, 41(3):68-77.
[14] LI Diansen, DUAN Hongwei, WANG Wei, et al. Strain rate and temperature effect on mechanical properties and failure of 3D needle-punched carbon/carbon composites under dynamic loading[J]. Composite Structures, 2017, 172: 229-241.
doi: 10.1016/j.compstruct.2016.11.082
[15] 檀江涛, 蒋高明, 高哲, 等. 抗低速冲击纺织复合材料头盔壳体研究进展[J]. 纺织学报, 2021, 42(8):185-193.
TAN Jiangtao, JIANG Gaoming, GAO Zhe, et al. Research progress of textile composite helmet shell against low-velocity impact[J]. Journal of Textile Research, 2021, 42(8):185-193.
[16] DAI S, CUNNINGHAM P R, MARSHALL S, et al. Open hole quasi-static and fatigue characterization of 3D woven composites[J]. Composite Structures, 2015, 131: 765-774.
doi: 10.1016/j.compstruct.2015.06.032
[17] 梁双强, 张成龙, 陈革, 等. 开孔三维编织复合材料强度预测及应力分析[J]. 西北工业大学学报, 2020, 38(4):889-896.
LIANG Shuangqiang, ZHANG Chenglong, CHEN Ge, et al. Open-hole 3D braided composites strength prediction and stress analysis[J]. Journal of Northwestern Polytechnical University, 2020, 38(4): 889-896.
doi: 10.1051/jnwpu/20203840889
[18] XU Fujun, SUN Lijun, ZHU Lvtao, et al. X-ray 3D microscopy analysis of fracture mechanisms for 3D orthogonal woven E-glass/epoxy composites with drilled and moulded-in holes[J]. Composites Part B: Engineering, 2018, 33: 193-202.
doi: 10.1016/S1359-8368(02)00009-4
[19] GUO Junhua, WEN Weidong, ZHANG Hongjian, et al. Influence of notch shape on the quasi-static tensile behavior of 2.5D woven composite structure[J]. Thin-Walled Structures, 2021. DOI: 10.1016/j.tws.2021.107944.
doi: 10.1016/j.tws.2021.107944
[1] 谷元慧, 周红涛, 张典堂, 刘景艳, 王曙东. 碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制[J]. 纺织学报, 2022, 43(03): 95-102.
[2] 卢俊, 王富军, 劳继红, 王璐, 林婧. 复合载荷下不同结构编织人工韧带的有限元分析[J]. 纺织学报, 2021, 42(08): 84-89.
[3] 董甜甜, 王蕾, 高卫东. 防羽面料孔径及分布特征与透气性和防钻绒性的关系[J]. 纺织学报, 2020, 41(12): 49-53.
[4] 刘明洁, 林婧, 关国平, BROCHU G, GUIDOIN R, 王璐. 典型纺织基人工韧带及其移出物结构与力学性能[J]. 纺织学报, 2020, 41(11): 66-72.
[5] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[6] 马莹, 何田田, 陈翔, 禄盛, 王友棋. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41(07): 59-66.
[7] 梁双强, 陈革, 周其洪. 开孔三维编织复合材料的压缩性能[J]. 纺织学报, 2020, 41(05): 79-84.
[8] 王翔华, 成玲, 张一帆, 彭海锋, 黄志文, 刘晓志. 三维机织复合材料板簧式起落架结构设计及其有限元分析[J]. 纺织学报, 2020, 41(03): 68-77.
[9] 刘俊岭, 孙颖, 陈利. 含变异结构的三维机织复合材料的轴向拉伸性能[J]. 纺织学报, 2019, 40(12): 162-168.
[10] 曹海建, 陈红霞, 黄晓梅. 玻璃纤维/环氧树脂基夹芯材料侧压性能数值模拟[J]. 纺织学报, 2019, 40(05): 59-63.
[11] 王心淼, 陈利, 张典堂, 陈冬. 多层多向机织复合材料细观结构建模及其性能[J]. 纺织学报, 2019, 40(02): 45-52.
[12] 孙颖 刘俊岭 郑园园 陈利 李嘉禄. 碳/芳纶混编三维编织复合材料拉伸性能[J]. 纺织学报, 2018, 39(02): 49-54.
[13] 孟超然 毕雪蓉 李佳蔚 郁崇文. 丹蒽醌对氧化脱胶苎麻纤维理化性能的调控[J]. 纺织学报, 2018, 39(02): 78-85.
[14] 张恒 甄琪 钱晓明 杨红英 申屠宝卿 张一风 刘让同. 聚酯/聚酰胺中空橘瓣型超细纤维非织造材料的孔径预测[J]. 纺织学报, 2018, 39(01): 56-61.
[15] 蔡冯杰 祝成炎 田伟 吕智宁 申晓. 3D打印成型的玻璃纤维增强聚乳酸基复合材料[J]. 纺织学报, 2017, 38(10): 13-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!