纺织学报 ›› 2022, Vol. 43 ›› Issue (08): 80-87.doi: 10.13475/j.fzxb.20210802608
吴瑕1, 姚菊明2,3,4, 王琰1, RIPON Das1, JIRI Militky5, MOHANAPRIYA Venkataraman5, 祝国成1,3()
WU Xia1, YAO Juming2,3,4, WANG Yan1, RIPON Das1, JIRI Militky5, MOHANAPRIYA Venkataraman5, ZHU Guocheng1,3()
摘要:
为得到碳纤维在无人机叶片中最优的铺层方式,通过Workbench中的ACP(ANSYS Composite PrepPost)模块,对碳纤维复合材料无人机叶片的铺层进行设计。利用SolidWorks三维建模软件建立无人机叶片的三维模型,并采用HyperMesh对叶片进行几何清理、划分网格等,利用Ansys Workbench Fluent对无人机叶片的不同转速进行流体仿真,提取叶片表面压力载荷,对不同铺层的碳纤维复合材料无人机叶片进行仿真与分析,得到碳纤维复合材料无人机叶片的力学仿真结果,并基于Tsai–Wu失效准则,计算每层铺层的失效系数,进而对比得出最优的碳纤维铺层方式为[0°,90°,90°,90°,0°]。
中图分类号:
[1] |
晏磊, 廖小罕, 周成虎, 等. 国无人机遥感技术突破与产业发展综述[J]. 地球信息科学学报, 2019, 21(4):476-495.
doi: 10.12082/dqxxkx.2019.180589 |
YAN Lei, LIAO Xiaohan, ZHOU Chenghu, et al. The impact of UAV remote sensing technology on the industrial development of China: a review[J]. Journal of Geo-Information Science, 2019, 21(4):476-495. | |
[2] | 孙钰, 周焱, 袁明帅, 等. 基于深度学习的森林虫害无人机实时监测方法[J]. 农业工程学报, 2018, 34(21):74-81. |
SUN Yu, ZHOU Yan, YUAN Mingshuai, et al. UAV real-time monitoring for forest pest based on deep learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21):74-81. | |
[3] | 段立勇. 基于无人机的风电叶片图像信息采集系统设计[D]. 哈尔滨: 哈尔滨理工大学, 2020:2-5. |
DUAN Liyong. Design of image information acquisition system for wind turbine blade based on UAV[D]. Harbin: Harbin University of Science and Technology, 2020:2-5. | |
[4] | 徐学宏, 王小群, 闫超, 等. 环氧树脂及其复合材料微波固化研究进展[J]. 材料工程, 2016, 44(8):111-120. |
XU Xuehong, WANG Xiaoqun, YAN Chao, et al. Research progress on microwave curing of epoxy resin and its composites[J]. Journal of Materials Engineering, 2016, 44(8):111-120. | |
[5] | 张青, 常新龙, 张有宏, 等. 炭纤维复合材料微波固化技术研究进展[J]. 固体火箭技术, 2018, 41(5):627-635. |
ZHANG Qing, CHANG Xinlong, ZHANG Youhong, et al. Research progress on microwave curing technology of carbon fiber composites[J]. Journal of Solid Rocket Technology, 2018, 41(5):627-635. | |
[6] | 张辰, 饶云飞, 李倩倩, 等. 碳纤维-玻璃纤维混杂增强环氧树脂复合材料低速冲击性能及其模拟[J]. 复合材料学报, 2021, 38(1):165-176. |
ZHANG Chen, RAO Yunfei, LI Qianqian, et al. Low-velocity impact behavior and numerical simulation of carbon fiber-glass fiber hybrid reinforced epoxy composites[J]. Acta Materiae Compositae Sinica, 2021, 38(1):165-176. | |
[7] | CHOI Jae-huyng, KIM Soo-hyun, BANG Hyung-joon, et al. Development of resin film infusion carbon composite structure for UAV[J]. Composites Research, 2019, 32:45-49. |
[8] | 郑传祥, 窦丹阳, 林娇, 等. 碳纤维复合材料防撞梁的设计与分析[J]. 机械制造, 2019, 57(6):57-62. |
ZHENG Chuanxiang, DOU Danyang, LIN Jiao, et al. Design and analysis of anti-collision beam made of carbon fiber composite[J]. Machinery, 2019, 57(6):57-62. | |
[9] | 陈静. 碳纤维复合材料传动轴的仿真分析[J]. 内燃机与配件, 2019, 4(17):65-66. |
CHEN Jing. Simulation analysis of carbon fiber composite transmission shaft[J]. Internal Combustion Engine & Parts, 2019, 4(17):65-66. | |
[10] | 周里群, 彭杰, 李玉平, 等. 2MW级风力发电机叶片结构强度设计仿真[J]. 计算机仿真, 2017, 34(12):101-109. |
ZHOU Liqun, PENG Jie, LI Yuping, et al. Design simulation of 2MW wind turbine blade structure strength[J]. Computer Simulation, 2017, 34(12):101-109. | |
[11] | 张昆, 汤文辉, 冉宪文. 正交各向异性CFRP材料的本构关系及其在平板撞击模拟中的应用[J]. 振动与冲击, 2019, 38(22):101-106, 129. |
ZHANG Kun, TANG Wenhui, RAN Xianwen. Constitutive relationship of anisotropic CFRP material and its application in planar plate impact simulation[J]. Journal of Vibration and Shock, 2019, 38(22):101-106, 129. | |
[12] |
MIRSAYAR M M. A combined stress/energy-based criterion for mixed-mode fracture of laminated composites considering fiber bridging micromechanics[J]. International Journal of Mechanical Sciences, 2021. DOI: 10.1016/j.ijmecsci.2021.106319.
doi: 10.1016/j.ijmecsci.2021.106319 |
[13] |
ARRUDA M R T, ALMEIDA-FERNANDES L, CASTRO L, et al. Tsai-Wu based orthotropic damage model[J]. Composites Part C:Open Access, 2021. DOI: 10.1016/j.jcom.2021.100122.
doi: 10.1016/j.jcom.2021.100122 |
[14] | 汤海武, 田清文, 石姗姗, 等. 纤维增强复合材料地铁司机室外罩仿真分析[J]. 大连交通大学学报, 2020, 41(6):46-50. |
TANG Haiwu, TIAN Qingwen, SHI Shanshan, et al. Simulation of metro cab cover with fiber reinforced plastic material[J]. Journal of Dalian Jiaotong University, 2020, 41(6):46-50. | |
[15] | 包荣剑. 林用小型垂直起降固定翼无人机的设计研究[D]. 哈尔滨: 东北林业大学, 2019:22-23. |
BAO Rongjian. Design and research of small vertical takeoff and landing fixed-wing forest UAV[D]. Harbin: Northeast Forestry University, 2019:22-23. | |
[16] | 杨知伦, 葛鲁振, 祁力钧, 等. 植保无人机旋翼下洗气流对喷幅的影响研究[J]. 农业机械学报, 2018, 49(1):116-122. |
YANG Zhilun, GE Luzhen, QI Lijun, et al. Influence of UAV rotor down-wash airflow on spray width[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1):116-122. | |
[17] | 雷瑶, 叶艺强, 王恒达, 等. 不同旋翼间距下共轴双旋翼无人机的气动特性[J/OL]. 机械科学与技术:1-7[2021-07-10].https://doi.org/10.13433/j.cnki.1003-8728.20200352. |
LEI Yao, YE Yiqiang, WANG Hengda, et al. Aerodynamic characteristics of coaxial rotors UAV with different rotor spacing[J/OL]. Mechanical Science and Technology for Aerospace Engineering:1-7[2021-07-10].https://doi.org/10.13433/j.cnki.1003-8728.20200352. | |
[18] | 边永亮, 李建平, 王鹏飞, 等. 单旋翼无人机流场分布特征及作业性能试验研究[J]. 河北农业大学学报, 2020, 43(3):115-120,129. |
BIAN Yongliang, LI Jianping, WANG Pengfei, et al. Experimental study on distribution characteristics and operating performance of airflow field in single rotor UAV[J]. Journal of Hebei Agricultural University, 2020, 43(3):115-120,129. | |
[19] | 杨海涛, 夏巍, 刘悦, 等. 共轴双旋翼气动特性数值仿真研究[J]. 机械科学与技术, 2020, 39(2):303-308. |
YANG Haitao, XIA Wei, LIU Yue, et al. Numerical simulation on aerodynamic performance of coaxial twin-rotors[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(2):303-308. | |
[20] | 陈志明, 袁剑平, 严谨, 等. 基于MRF方法和滑移网格的螺旋桨水动力性能研究[J]. 船舶工程, 2020, 42(S1):157-162,311. |
CHEN Zhiming, YUAN Jianping, YAN Jin, et al. Study on hydrodynamic performance of propeller based on MRF model and sliding mesh[J]. Ship Engineering, 2020, 42(S1):157-162,311. | |
[21] | PATIL Harshal, AJEY Kumar Patel, HARISH J Pant, et al. CFD simulation model for mixing tank using multiple reference frame (MRF) impeller rotation[J]. ISH Journal of Hydraulic Engineering, 2021, 27(2):1-10. |
[22] | 曹铭超. 风力发电机叶片设计模拟[D]. 南京: 东南大学, 2019:26-38. |
CAO Mingchao. Design and simulation of wind turbine blade[D]. Nanjing: School of Automation Southeast University, 2019:26-38. | |
[23] | 王福山. 基于流固耦合的机车散热器风扇疲劳性能与模态分析[D]. 大连: 大连交通大学, 2020:35-65. |
WANG Fushan. Fatigue performance and modal analysis of locomotive cooling fan based on fluid-solid coupling method[D]. Dalian: Dalian Jiaotong University, 2020:35-65. | |
[24] | 吴京泰. 10 MW浮式风机气动性能的CFD流固耦合模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2019:51-63. |
WU Jingtai. CFD simulation with fluid-structure interaction for aerodynamic performace of a 10 MW floating off-shore wind turbine[D]. Harbin: Harbin Institute of Technology, 2019:51-63. | |
[25] | 李家盛. 螺旋桨和水翼流固耦合机理与计算方法研究[D]. 上海: 上海交通大学, 2018:62-69. |
LI Jiasheng. Study on fluid-struture interaction mechanism and algorithm of propellers and hydrofoils[D]. Shanghai: Shanghai Jiao Tong University, 2018:62-69. |
[1] | 强荣, 冯帅博, 马茜, 陈博文, 陈熠. 钴/碳纤维复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(02): 30-36. |
[2] | 强荣, 冯帅博, 李婉莹, 尹琳芝, 马茜, 陈博文, 陈熠. 生物质衍生磁性碳基复合材料的制备及其吸波性能[J]. 纺织学报, 2022, 43(01): 21-27. |
|