纺织学报 ›› 2022, Vol. 43 ›› Issue (08): 95-100.doi: 10.13475/j.fzxb.20210309107

• 染整与化学品 • 上一篇    下一篇

大麻纤维的芬顿法脱胶及其性能

孙颖1,2(), 李端鑫1, 于洋1, 陈嘉琳1, 范皖月1   

  1. 1.齐齐哈尔大学 轻工与纺织学院, 黑龙江 齐齐哈尔 161000
    2.齐齐哈尔大学 寒区麻及制品教育部工程研究中心, 黑龙江 齐齐哈尔 161000
  • 收稿日期:2021-03-29 修回日期:2022-04-30 出版日期:2022-08-15 发布日期:2022-08-24
  • 作者简介:孙颖(1971—),女,教授,硕士。主要研究方向为天然纤维的提取脱胶工艺。E-mail: sunying71750@sina.com
  • 基金资助:
    黑龙江省教育厅基本科研业务费科研项目(135509503)

Degumming of hemp fibers using Fenton method and fiber properties

SUN Ying1,2(), LI Duanxin1, YU Yang1, CHEN Jialin1, FAN Wanyue1   

  1. 1. College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161000, China
    2. Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar University, Qiqihar, Heilongjiang 161000, China
  • Received:2021-03-29 Revised:2022-04-30 Published:2022-08-15 Online:2022-08-24

摘要:

为减少纺织工业中脱胶废液的强碱强酸造成环境的污染,采用芬顿法对大麻纤维进行脱胶处理。以残胶率、断裂强力、直径、白度及纤维长度为指标,探讨pH值、七水合硫酸亚铁浓度、双氧水浓度和温度对大麻纤维脱胶效果的影响;借助红外光谱仪和X射线衍射仪分析了大麻纤维的化学结构及结晶度变化,通过扫描电子显微镜观察了大麻纤维的脱胶效果。结果表明:最佳脱胶工艺条件为pH值6.0,七水合硫酸铁质量浓度10 g/L,双氧水质量浓度9 g/L,温度80 ℃,此时脱胶纤维残胶率为10.12%,断裂强力为32.453 cN,直径为29.745 μm,长度为 5.62 cm; 芬顿法可有效去除大麻纤维的胶质。

关键词: 大麻纤维, 芬顿法, 脱胶, 前处理, 力学性能

Abstract:

In order to reduce the environmental pollution caused by the strong alkalinity in the degumming waste liquid in the textile industry, the Fenton method was used to degum the hemp skin fiber. Using residual gum rate, breaking strength, diameter, whiteness and fiber length as indicators, the effects of pH value, ferrous sulfate concentration, hydrogen peroxide concentration and temperature on the effect of hemp degumming process were discussed. The chemical structure and crystallinity changes of hemp fibers were analyzed by infrared spectrometer and X-ray diffraction analyzer, and the degumming effect of hemp fibers was examined by scanning electron microscope. The test results show that the optimum degumming process conditions are pH 6.0, ferrous sulfate mass concentration 10 g/L, hydrogen peroxide mass concentration 9 g/L, and temperature 80 ℃. Under the optimal process, the residual glue rate of the degummed fibers was 10.12%, the breaking strength was 32.453 cN, the fiber diameter was 29.745 μm, and the fiber length was 5.62 cm. It was found that Fenton method can effectively remove the gum of hemp fiber.

Key words: hemp fiber, Fenton method, degumming, pretreatment, mechanical property

中图分类号: 

  • TS102.224

表1

不同pH值下脱胶大麻纤维的性能"

pH值 断裂强力/cN 残胶率/% 直径/μm 白度/% 长度/cm
3 49.68 ± 1.50 19.75 ± 0.10 25.97 ± 0.4 22.55 ± 0.1 5.84 ± 0.02
5 53.50 ± 1.00 16.15 ± 0.51 30.54 ± 0.7 29.65 ± 0.5 5.79 ± 0.01
7 41.92 ± 1.50 20.70 ± 0.25 39.86 ± 0.2 43.57 ± 0.2 5.81 ± 0.02
9 27.97 ± 1.75 22.22 ± 0.27 36.31 ± 0.3 29.74 ± 0.3 5.72 ± 0.02
12 10.27 ± 0.45 20.32 ± 0.25 40.77 ± 0.5 60.19 ± 0.5 5.69 ± 0.03

表2

不同FeSO4·7H2O质量浓度下脱胶大麻纤维的性能"

FeSO4·7H2O
质量浓度/(g·L–1)
断裂强力/cN 残胶率/% 直径/μm 白度/% 长度/cm
3 53.50 ± 1.0 14.15 ± 0.1 35.44 ± 0.5 29.65 ± 0.1 5.64 ± 0.02
5 34.29 ± 0.5 16.26 ± 0.2 27.85 ± 0.7 45.93 ± 0.5 5.72 ± 0.01
7 31.47 ± 0.5 14.43 ± 0.1 21.32 ± 0.6 29.10 ± 0.2 5.57 ± 0.02
10 42.14 ± 0.7 14.46 ± 0.1 15.68 ± 0.3 23.83 ± 0.3 5.76 ± 0.02
15 11.36 ± 0.6 13.71 ± 0.1 30.75 ± 0.2 31.35 ± 0.5 5.84 ± 0.01

表3

不同H2O2浓度下脱胶大麻纤维的性能"

H2O2质量
浓度/(g·L–1)
断裂强力/cN 残胶率/% 直径/μm 白度/% 长度/cm
4 31.97 ± 1.00 14.43 ± 0.10 36.97 ± 0.2 45.92 ± 0.5 5.81 ± 0.02
6 31.02 ± 1.00 12.79 ± 0.20 30.70 ± 0.3 32.83 ± 0.5 5.72 ± 0.01
8 45.00 ± 0.75 10.68 ± 0.20 28.15 ± 0.2 35.12 ± 0.2 5.64 ± 0.02
10 19.53 ± 1.00 11.65 ± 0.30 27.03 ± 0.9 36.47 ± 0.7 5.52 ± 0.20
15 35.54 ± 1.00 10.46 ± 0.25 18.99 ± 0.5 45.88 ± 0.5 5.41 ± 0.30

表4

不同温度下脱胶大麻纤维的性能"

温度/℃ 断裂强力/cN 残胶率/% 直径/μm 白度/% 长度/cm
50 59.35 ± 1.00 13.45 ± 0.10 24.67 ± 0.2 25.84 ± 0.5 5.74 ± 0.02
60 45.00 ± 1.00 10.68 ± 0.20 21.05 ± 0.3 26.47 ± 0.5 5.81 ± 0.01
70 46.09 ± 0.75 11.51 ± 0.20 18.94 ± 0.2 22.56 ± 0.2 5.79 ± 0.02
80 48.09 ± 0.75 12.33 ± 0.30 19.95 ± 0.9 29.21 ± 0.1 5.83 ± 0.02
90 29.29 ± 1.00 10.98 ± 0.25 16.34 ± 0.5 23.22 ± 0.5 5.71 ± 0.03

表5

不同时间下脱胶大麻纤维的性能"

时间/min 断裂强力/cN 残胶率/% 直径/μm 白度/% 长度/cm
30 42.37 ± 1.00 21.37 ± 2.0 27.48 ± 0.2 37.49 ± 0.3 5.92 ± 0.04
45 27.65 ± 2.00 16.94 ± 1.0 22.34 ± 0.3 30.21 ± 0.1 5.83 ± 0.09
60 21.43 ± 1.00 10.42 ± 1.0 16.13 ± 0.1 23.64 ± 0.2 5.74 ± 0.02
75 14.53 ± 0.75 9.73 ± 0.9 14.91 ± 0.1 21.82 ± 0.1 5.71 ± 0.02
90 9.67 ± 0.50 8.94 ± 0.3 12.75 ± 0.2 20.13 ± 0.3 5.54 ± 0.03

表6

大麻纤维脱胶正交试验因素与水平表"

水平 A
pH值
B
FeSO4·7H2O
质量浓度/
(g·L–1)
C
H2O2
质量浓度/
(g·L–1)
D
温度/℃
1 4 8 7 60
2 5 9 8 70
3 6 10 9 80

表7

大麻纤维脱胶正交试验数据"

编号 A B C D E 残胶
率/%
断裂强
力/cN
直径/
μm
纤维长
度/cm
1 1 1 1 1 1 11.29 37.00 50.41 5.72
2 1 2 2 2 2 19.48 36.96 56.78 5.46
3 1 3 3 3 3 13.42 15.39 41.53 5.65
4 2 1 1 2 2 11.83 47.75 51.95 5.73
5 2 2 2 3 3 9.36 40.74 58.06 5.56
6 2 3 3 1 1 8.13 46.88 43.49 5.47
7 3 1 2 1 3 10.08 67.49 20.17 5.67
8 3 2 3 2 1 8.68 45.14 24.56 5.33
9 3 3 1 3 2 12.70 25.04 19.37 5.42
10 1 1 3 3 2 11.68 17.13 30.75 5.64
11 1 2 1 1 3 10.99 30.60 29.53 5.73
12 1 3 2 2 1 16.69 24.01 35.44 5.54
13 2 1 2 3 1 12.13 27.31 30.05 5.72
14 2 2 3 1 2 16.76 24.02 21.19 5.42
15 2 3 1 2 3 11.27 20.50 19.04 5.39
16 3 1 3 2 3 11.82 10.54 16.30 5.63
17 3 2 1 3 1 9.03 23.07 17.49 5.73
18 3 3 2 1 2 11.59 12.65 23.96 5.61

表8

大麻纤维脱胶正交试验数据极差分析表"

指标 A B C D
K1 13.925 11.472 11.185 11.473
残胶率 K2 11.580 12.383 13.222 13.295
K3 10.650 12.300 11.748 11.387
R 3.275 0.911 2.037 1.908
K1 26.843 34.537 30.660 34.773
断裂强力 K2 34.533 33.422 34.860 30.817
K3 30.655 24.078 26.517 24.780
R 7.690 10.459 8.343 9.993
K1 40.740 33.272 31.298 31.458
直径 K2 37.297 34.602 37.410 34.012
K3 20.308 27.472 29.637 32.875
R 20.432 10.130 7.773 2.554
K1 5.623 5.685 5.62 5.603
长度 K2 5.548 5.538 5.593 5.513
K3 5.565 5.513 5.523 5.620
R 0.075 0.172 0.097 0.107

表9

脱胶处理前后大麻纤维的性能与各组分含量"

样品名称 残胶
率/%
断裂强
力/cN
直径/
μm
长度/
cm
纤维素
含量/%
木质素
含量/%
半纤维素
含量/%
果胶含
量/%
其他含
量/%
大麻原麻 100.030 120.457 6.00 49.63 18.98 19.32 6.79 5.28
处理后大麻 10.12 32.453 29.745 5.62 79.14 9.49 9.06 1.21 1.10

图1

脱胶处理前后大麻纤维红外光谱图"

图2

脱胶处理前后大麻纤维X射线衍射图"

图3

处理前后大麻纤维扫描电镜照片 (×2 000)"

[1] 刘宇, 王晓云. 大麻及甲壳素纤维抗菌针织物性能研究[J]. 针织工业, 2018(8): 23-27.
LIU Yu, WANG Xiaoyun. Properties study of anti-bacterial knitted fabric with hemp and chitin fiber[J]. Knitting Industries, 2018(8): 23-27.
[2] 张袁松, 谢吉祥, 李晓龙, 等. 基于闪爆-碱煮联合工艺的天然竹纤维提取[J]. 纺织学报, 2012, 33(10): 56-61.
ZHANG Yuansong, XIE Jixiang, LI Xiaolong, et al. Steam explosion and alkali boiling combined degumming of natural bamboo fiber[J]. Journal of Textile Research, 2012, 33(10): 56-61.
[3] 周腾腾, 费凡, 王俊, 等. 精细化工废水预处理工艺研究进展[J]. 广东化工, 2020, 47(20): 58-64.
ZHOU Tengteng, FEI Fan, WANG Jun, et al. Research progress on pretreatment technology of fine chemical wastewater[J]. Guangdong Chemical, 2020, 47(20): 58-64.
[4] 李魁, 钱江枰, 杨文秀, 等. Fenton法预处理制药园区尾水的试验研究[J]. 浙江化工, 2019, 50(12): 34-38.
LI Kui, QIAN Jiangping, YANG Wenxiu, et al. Experimental study on pretreatment of tail water of pharmaceutical park by Fenton method[J]. Zhejiang Chemical, 2019, 50(12): 34-38.
[5] ZHOU Jiajia, LI Zhaoling, YU Chongwen. Property of ramie fiber degummed with Fenton reagent[J]. Fibers and Polymers, 2017, 18(10):1891-1897.
doi: 10.1007/s12221-017-6489-0
[6] SONG Y, JIANG W, ZHANG Y, et al. Isolation and characterization of cellulosic fibers from kenaf bast using steam explosion and fenton oxidation treatment[J]. Cellulose, 2018, 25(9):1-14.
doi: 10.1007/s10570-017-1536-y
[7] 周佳佳, 郁崇文. Fenton试剂用于苎麻氧化脱胶的探究[J]. 东华大学学报(自然科学版), 2017, 43:191-197.
ZHOU Jiajia, YU Chongwen. Investigation of oxidation degumming of ramie using Fenton reagent[J]. Journal of Donghua University (Natural Science), 2017, 43:191-197.
[8] 张娴娴, 尹光志, 李东伟. Fenton试剂催化氧化法处理焦化废水的实验研究[J]. 矿业安全与环保, 2005(2):12- 13,17-81.
ZHANG Xianxian, YIN Guangzhi, LI Dongwei. Experimental study on catalytic oxidation method with fentong reagent for treatment of coking wastewater[J]. Mining Safety and Environmental Protection, 2005:12-13,17-81.
[9] 陈志冉, 祝丹丹. Fenton试剂氧化降解MC-LR影响因素分析[J]. 供水技术, 2011(5): 21-24.
CHEN Zhiran, ZHU Dandan. Influencing factors of MC-LR oxidation and degradation by Fenton method[J]. Water Supply Technology, 2011(5): 21-24.
[10] 杨健, 吴云涛, 邢美燕. 微电解-Fenton氧化处理难降解蒽醌染整废水试验[J]. 同济大学学报(自然科学版), 2005(12): 1635-1640.
YANG Jian, WU Yuntao, XING Meiyan. Treatment of refractory anthraquinone dyeing wastewater by micro-electrolysis and Fenton oxidation process[J]. Journal of Tongji University(Natural Science Edition), 2005(12): 1635-1640.
[11] 李雪原. Fenton/超声高级氧化法降解含吡啶废水的研究[D]. 南昌: 华东交通大学, 2018: 9-11.
LI Xueyuan. Fenton/ultrasound advanced oxidation method to degrade the study of pyridine wastewater[D]. Nanchang: East China Jiaotong University, 2018: 9-11.
[12] 李亚峰, 朱爱霞, 姚敬博, 等. UV/Fenton法处理废水中苯酚[J]. 沈阳建筑大学学报(自然科学版), 2008(4): 637-640.
LI Yafeng, ZHU Aixia, YAO Jingbo, et al. Experimental study on treatment of phenol in wastewater by UV/Fenton oxidation[J]. Journal of Shenyang Building University (Natural Science Edition), 2008(4): 637-640.
[13] 李百健, 吴超, 邵京. 柑橘皮果胶的制备及其脱色工艺[J]. 湖北农业科学, 2013, 52: 5816-5820.
LI Baijian, WU Chao, SHAO Jing. Process of Pectin extraction from orange peel and its decolorization[J]. Hubei Agricultural Science, 2013, 52: 5816-5820.
[1] 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39.
[2] 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28.
[3] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[4] 李艾元, 施心雨, 岳万福, 游卫云. 丝素蛋白水凝胶支架的制备及其性能[J]. 纺织学报, 2022, 43(06): 44-48.
[5] 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93.
[6] 赵波波, 王亮, 李敬毓, 万刚, 夏兆鹏, 刘雍. 六次甲基四胺交联酚醛纤维的制备及其性能[J]. 纺织学报, 2022, 43(05): 57-62.
[7] 邵灵达, 黄锦波, 金肖克, 田伟, 祝成炎. 硅烷偶联剂改性处理对玻璃纤维织物增强聚苯硫醚复合材料性能的影响[J]. 纺织学报, 2022, 43(04): 68-73.
[8] 方镁淇, 王茜, 李彦, 李超婧, 黎昊, 王璐. 女性压力性尿失禁吊带的设计及其体外力学性能评价[J]. 纺织学报, 2022, 43(03): 38-43.
[9] 谷元慧, 周红涛, 张典堂, 刘景艳, 王曙东. 碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制[J]. 纺织学报, 2022, 43(03): 95-102.
[10] 陈咏, 乌婧, 王朝生, 潘小虎, 李乃祥, 戴钧明, 王华平. 生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(02): 37-43.
[11] 闵小豹, 潘志娟. 生物质纤维/菠萝叶纤维多组分混纺纱线的品质与性能[J]. 纺织学报, 2022, 43(01): 74-79.
[12] 王松立, 王美林, 周湘, 刘遵峰. 人造蜘蛛丝与仿蜘蛛丝纤维的研究进展[J]. 纺织学报, 2021, 42(12): 174-179.
[13] 宋雪旸, 张岩, 徐成功, 王萍, 阮芳涛. 碳纤维/聚丙烯/聚乳酸增强复合材料的力学性能[J]. 纺织学报, 2021, 42(11): 84-88.
[14] 何俊燕, 李明福, 连文伟, 黄涛, 张劲. 菠萝叶纤维的超声波辅助化学脱胶工艺[J]. 纺织学报, 2021, 42(09): 83-89.
[15] 周濛濛, 蒋高明, 高哲, 郑培晓. 纬编衬经衬纬管状织物增强复合材料研究进展[J]. 纺织学报, 2021, 42(07): 184-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!