纺织学报 ›› 2022, Vol. 43 ›› Issue (09): 203-210.doi: 10.13475/j.fzxb.20210104508
徐铭涛, 嵇宇, 仲越, 张岩, 王萍, 眭建华, 李媛媛()
XU Mingtao, JI Yu, ZHONG Yue, ZHANG Yan, WANG Ping, SUI Jianhua, LI Yuanyuan()
摘要:
为改善碳纤维/环氧树脂基复合材料的脆性断裂问题,常通过树脂增韧和纤维改性等方式实现。本文从树脂改性、界面改性及结构设计3个方面综述了碳纤维增强环氧树脂基复合材料的研究进展。其中树脂改性主要有纳米材料改性、橡胶弹性体改性及热塑性树脂改性增韧等方式,通过增加填充粒子与树脂基体间键合来提高环氧树脂的韧性;界面改性主要是碳纤维表面改性,通过增加碳纤维表面活性官能团或多尺度进行表面改性,增强碳纤维和环氧树脂之间的界面结合性能,达到复合材料增韧的效果;复合材料结构设计主要是设计纤维铺层角度、厚度、结构,通过结构优化来增强复合材料的韧性。最后分析了3种改性方式存在的问题,并指出3种方式结合使用是未来复合材料改性的研究方向。
中图分类号:
[1] |
MOLCHANOV E S, YUDIN V E, KYDRALIEVA K A, et al. Comparison of the thermomechanical characteristics of porcher carbon fabric-based composites for orthopaedic applications[J]. Mechanics of Composite Materials, 2012, 48 (3): 343-350.
doi: 10.1007/s11029-012-9281-7 |
[2] |
LOU T J, LOPES S M R, LOPES A V. Factors affecting moment redistribution at ultimate in continuous beams prestressed with external CFRP tendons[J]. Composites Part B: Engineering, 2014, 66: 136-146.
doi: 10.1016/j.compositesb.2014.05.007 |
[3] |
OGASAWARA T, ISHIDA Y, KASAI T. Mechanical properties of carbon fiber/fullerene-dispersed epoxy composites[J]. Composites Science and Technology, 2009, 69(11/12): 2002-2007.
doi: 10.1016/j.compscitech.2009.05.003 |
[4] | VAN de Werken N, REESE M S, TAHA M R, et al. Investigating the effects of fiber surface treatment and alignment on mechanical properties of recycled carbon fiber composites[J]. Composite Part A: Applied Science and Manufacturing, 2019, 119: 38-47. |
[5] |
EKSI S, GENEL K. Comparison of mechanical properties of unidirectional and woven carbon, glass and aramid fiber reinforced epoxy composites[J]. Acta Physica Polonica A, 2017, 132(3): 879-882.
doi: 10.12693/APhysPolA.132.879 |
[6] |
GALYSHEV S, GOMZIN A, GALLYAMOVA R, et al. On the liquid-phase technology of carbon fiber/aluminum matrix composites[J]. International Journal of Minerals Metallurgy and Materials, 2019, 26(12): 1578-1584.
doi: 10.1007/s12613-019-1877-7 |
[7] |
ZHAO F, HUANG Y D, LIU L, et al. Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composite[J]. Carbon, 2011, 49(8): 2624-2632.
doi: 10.1016/j.carbon.2011.02.026 |
[8] | HSU Y I, HUANG L L, ASOH T A, et al. Anhydride-cured epoxy resin reinforcing with citric acid-modified cellulose[J]. Polymer Degradation and Stability, 2020, 178: 1-7. |
[9] |
MENG L H, FAN D P, ZHANG C H, et al. Surface amination and hydrolyzation of carbon fibers treated with triethylene tetramine in supercritical water/ethanol system[J]. Composites Part B: Engineering, 2014, 56: 575-581.
doi: 10.1016/j.compositesb.2013.08.025 |
[10] | YENIER Z, ALTAY L, SARIKANAT M. Effect of surface modification of carbon fibers on properties of carbon/epoxy composites[J]. Emerging Materials Research, 2020, 9(1): 110-118. |
[11] |
JIA Z A, LI T T, CHIANG F P, et al. An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites[J]. Composites Science and Technology, 2018, 154: 53-63.
doi: 10.1016/j.compscitech.2017.11.015 |
[12] |
HUNG P Y, LAU K T, FOX B, et al. Effect of graphene oxide concentration on the flexural properties of CFRP at low temperature[J]. Carbon, 2019, 152: 556-564.
doi: 10.1016/j.carbon.2019.06.032 |
[13] |
WANG Z Y, YANG B, XIAN G, et al. An effective method to improve the interfacial shear strength in GF/CF reinforced epoxy composites characterized by fiber pull-out test[J]. Composites Communications, 2020, 19: 168-172.
doi: 10.1016/j.coco.2020.03.013 |
[14] | HE Y X, CHEN Q Y, LIU H, et al. Friction and wear of MoO3/graphene oxide modified glass fiber reinforced epoxy nanocomposites[J]. Macromolecular Materials and Engineering, 2019, 304(8): 1-11. |
[15] |
SHEN X J, LIU Y, XIAO H M, et al. The reinforcing effect of graphene nanosheets on the cryogenic mechanical properties of epoxy resins[J]. Composites Science and Technology, 2012, 72(13): 1581-1587.
doi: 10.1016/j.compscitech.2012.06.021 |
[16] |
PATHAK A K, BORAH M, GUPTA A, et al. Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites[J]. Composites Science and Technology, 2016, 135: 28-38.
doi: 10.1016/j.compscitech.2016.09.007 |
[17] |
HUNG P Y, LAU K T, QIAO K, et al. Property enhancement of CFRP composites with different graphene oxide employment methods at a cryogenic temperature[J]. Composites Part A: Applied Science and Manufacturing, 2019, 120: 56-63.
doi: 10.1016/j.compositesa.2019.02.012 |
[18] |
CHRUSCIEL J J, LESNIAK E. Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates[J]. Progress in Polymer Science, 2015, 41: 67-121.
doi: 10.1016/j.progpolymsci.2014.08.001 |
[19] |
YANG G, ZHENG B, YANG J P, et al. Preparation and cryogenic mechanical properties of epoxy resins modified by poly(ethersulfone)[J]. Journal of Polymer Science Part A: Polymer Chemistry, 46(2): 612-624.
doi: 10.1002/pola.22409 |
[20] | VIJAYAN P P, PUGLIA D, Al-MAADEED M A S A, et al. Elastomer/thermoplastic modified epoxy nanocomposites: the hybrid effect of 'micro' and 'nano' scale[J]. Materials Science & Engineering R: Reports, 2017, 116: 1-29. |
[21] |
RICCIARDI M R, PAPA I, LANGELLA A, et al. Mechanical properties of glass fibre composites based on nitrile rubber toughened modified epoxy resin[J]. Composites Part B: Engineering, 2018, 139: 259-267.
doi: 10.1016/j.compositesb.2017.11.056 |
[22] | KOU Y J, ZHOU W Y, LI B, et al. Enhanced mechanical and dielectric properties of an epoxy resin modified with hydroxyl-terminated polybutadiene[J]. Composites Part A: Applied Scienceand Manufacturing, 2018, 114: 97-106. |
[23] |
FRANCIS B, THOMAS S, SADHANA R, et al. Diglycidyl ether of risphenol: a epoxy resin modified using poly (ether ether ketone) with pendent tert-butyl groups[J]. Journal of Polymer Science Part B: Polymer Physics, 2007, 45(17): 2481-2496.
doi: 10.1002/polb.21238 |
[24] |
JOHNSEN B B, KINLOCH A J, TAYLOR A C. Toughness of syndiotactic polystyrene/epoxy polymer blends: microstructure and toughening mechanisms[J]. Polymer, 2005, 46(18): 7352-7369.
doi: 10.1016/j.polymer.2005.05.151 |
[25] |
KONNOLA R, JOJI J, PARAMESWARANPILLAI J, et al. Structure and thermo-mechanical properties of CTBN-grafted-GO modified epoxy/DDS composites[J]. RSC Advances, 2015, 5(76): 61775-61786.
doi: 10.1039/C5RA10599D |
[26] | KARTHIKEYAN L, MATHEW D, ROBERT T M. Poly(ether ether ketone)-bischromenes: synthesis, characterization, and influence on thermal, mechanical, and thermo mechanical properties of epoxy resin[J]. Polymer for Advance Technologies, 2019, 30(4): 1061-1071. |
[27] |
QUE X F, YAN Y R, QIU Z M, et al. Synthesis and characterization of trifluoromethyl-containing polyimide-modified epoxy resins[J]. Journal of Materials Science, 2016, 51(24): 10833-10848.
doi: 10.1007/s10853-016-0294-9 |
[28] |
ODEGARD G M, CLANCY T C, GATES T S. Modeling of the mechanical properties of nanoparticle/polymer composites[J]. Polymer, 2005, 46(2): 553-562.
doi: 10.1016/j.polymer.2004.11.022 |
[29] |
RUBAN Y J V, MON S G, ROY D V. Mechanical and thermal studies of unsaturated polyester-toughened epoxy composites filled with amine-functionalized nanosilica[J]. Applied Nanoscience, 2013, 3(1): 7-12.
doi: 10.1007/s13204-012-0068-x |
[30] |
TIAN Y, ZHANG H, ZHAO J, et al. High strain rate compression of epoxy based nanocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 62-70.
doi: 10.1016/j.compositesa.2016.06.008 |
[31] |
OCHI M, MORISHITA T, KOKUFU S, et al. Network chain orientation in the toughening process of the elastomer modified mesogenic epoxy resin[J]. Polymer, 2001, 42(24): 9687-9695.
doi: 10.1016/S0032-3861(01)00474-8 |
[32] |
XU S A, SONG X X, CAI Y B. Mechanical properties and morphologies of carboxyl-terminated butadiene acrylonitrile liquid rubber/epoxy blends compatibilized by pre-crosslinking[J]. Materials, 2016, 9(8): 1-12.
doi: 10.3390/ma9010001 |
[33] | ZHOU H S, SONG X X, XU S A. Mechanical and thermal properties of novel rubber-toughened epoxy blend prepared by in situ pre-crosslinking[J]. Journal of Applied Polymer Science, 2014, 131(22): 2-7. |
[34] |
GE Z, ZHANG W G, HUANG C, et al. Study on epoxy resin toughened by epoxidized hydroxy-terminated polybutadiene[J]. Materials, 2018, 11(6): 1-16.
doi: 10.3390/ma11010001 |
[35] |
CHIKHI N, FELLAHI S, BAKAR M. Modification of epoxy resin using reactive liquid (ATBN) rubber[J]. European Polymer Journal, 2002, 38(2): 251-264.
doi: 10.1016/S0014-3057(01)00194-X |
[36] |
WANG C, LI H, ZHANG H L, et al. Influence of addition of hydroxyl-terminated liquid nitrile rubber on dielectric properties and relaxation behavior of epoxy resin[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(4): 2258-2269.
doi: 10.1109/TDEI.2016.7556502 |
[37] |
FAKHAR A, SALEHI M S, KEIVANI M, et al. Comprehensive study on using VTBN reactive oligomer for rubber toughening of epoxy resin and composite[J]. Polymer:Plastics Technology and Engineering, 2016, 55(4): 343-355.
doi: 10.1080/03602559.2015.1098677 |
[38] |
JONES A R, WATKINS C A, WHITE S R, et al. Self-healing thermoplastic-toughened epoxy[J]. Polymer, 2015, 74: 254-261.
doi: 10.1016/j.polymer.2015.07.028 |
[39] | YING W B, YANG H S, MOON D S, et al. Epoxy resins toughened with in situ azide-alkyne polymerized polysulfones[J]. Journal of Applied Polymer Science, 2018, 135(5): 1-12. |
[40] | LEE J S, KO N Y, KWAK N H, et al. Toughening of semi-IPN structured epoxy using a new PEEK-type polymer via in situ azide-alkyne click polymerization[J]. Journal of Applied Polymer Science, 2019, 136(44): 243-251. |
[41] |
WANG T T, HUANG P, LI Y Q, et al. Epoxy nanocomposites significantly toughened by both poly(sulfone) and graphene oxide[J]. Composites Communication, 2019, 14: 55-60.
doi: 10.1016/j.coco.2019.05.007 |
[42] | ZHANG M, CHEN M Q, NI Z B. PPG-terminated tetra-carbamates as the toughening additive for bis-a epoxy resin[J]. Polymer, 2019, 11(9): 1-11. |
[43] | SONG P, LIANG C B, WANG L, et al. Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide[J]. Composites Science and Technology, 2019, 181: 1-7. |
[44] | 龚克, 张海黔. 硅烷偶联处理工艺对CFRP的增强效果研究[J]. 润滑与密封, 2007, 32(4): 142-144. |
GONG Ke, ZHANG Haiqian. Study on strengthening effect of silane coupling treatment on CFRP[J]. Lubrication Engineering, 2007, 32(4): 142-144. | |
[45] |
HUNG K B, LI J, FAN Q, et al. The enhancement of carbon fiber modified with electropolymer coating to the mechanical properties of epoxy resin composites[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(7): 1133-1140.
doi: 10.1016/j.compositesa.2008.04.004 |
[46] | 王源升, 朱珊珊, 姚树人, 等. 碳纤维表面改性及对其复合材料性能的影响[J]. 高分子材料科学与工程, 2014, 30(2): 16-20. |
WANG Yuansheng, ZHU Shanshan, YAO Shuren, et al. Surface modification of carbon fiber and its effect on properties of composites[J]. Polymeric Materials Science and Engineering, 2014, 30(2): 16-20. | |
[47] |
LUO Y C, CHENG X T, ZHANG X Q, et al. Fabrication of a three-dimensional reinforcement via grafting epoxy functionalized graphene oxide onto carbon fibers[J]. Materials Letters, 2017, 209: 463-466.
doi: 10.1016/j.matlet.2017.08.049 |
[48] |
WU G S, MA L C, LIU L, et al. Interfacially reinforced methylphenylsilicone resin composites by chemically grafting multiwall carbon nanotubes onto carbon fibers[J]. Composites Part B: Engineering, 2015, 82: 50-58.
doi: 10.1016/j.compositesb.2015.08.012 |
[49] | XIONG S, ZHAO Y, WANG Y K, et al. Enhanced interfacial properties of carbon fiber/epoxy composites by coating carbon nanotubes onto carbon fiber surface by one-step dipping method[J]. Applied Surface Science, 2021, 546: 1-11. |
[50] | NAVARRO P, AUBRY J, PASCAL F, et al. Effects of the stacking sequence, material nature and addition of an adhesive film on the delamination resistance of woven composite laminates in mode I and Ⅱ[J]. Advanced Composites Letters, 2015, 24(1): 1-5. |
[51] |
PARTRIDGE I K, CARTIE D D R. Delamination resistant laminates by Z-Fiber pinning: part I:manufacture and fracture performance[J]. Composites Part A: Applied Science and Manufacturing, 2005, 36(1): 55-64.
doi: 10.1016/S1359-835X(04)00180-0 |
[52] |
LI G Q, VELAMARTHY R C. Fabricating, testing, and modeling of advanced grid stiffened fiber reinforced polymer tube encased concrete cylinders[J]. Journal of Composite Materials, 2008, 42(11): 1103-1124.
doi: 10.1177/0021998308090453 |
[1] | 鲁虹, 宋佳怡, 李圆圆, 滕峻峰. 基于合体两片袖的内旋造型结构设计[J]. 纺织学报, 2022, 43(08): 140-146. |
[2] | 董智佳, 孙菲, 丛洪莲, 俞旭良. 低损耗纬编成形女士背心的结构设计与建模[J]. 纺织学报, 2022, 43(07): 129-134. |
[3] | 雷鸽, 李小辉. 数字化服装结构设计技术的研究进展[J]. 纺织学报, 2022, 43(04): 203-209. |
[4] | 陆爽怿, 周赳. 单经双纬组合全显色提花织物的结构交织平衡特征[J]. 纺织学报, 2021, 42(09): 59-65. |
[5] | 柯莹, 张海棠, 朱晓涵, 王宏付, 王敏. 电加热高空清洁作业服研制与性能评价[J]. 纺织学报, 2021, 42(08): 149-155. |
[6] | 王伟荣, 丛洪莲. 基于下肢运动特征的纬编无缝瑜伽裤结构设计[J]. 纺织学报, 2021, 42(06): 140-145. |
[7] | 苏梦茹, 邹婷, 陈颀超, 李超婧, 王富军, 王璐. 医用倒刺缝合线的研究进展[J]. 纺织学报, 2021, 42(05): 178-184. |
[8] | 陆振乾, 杨雅茹, 荀勇. 纤维对水泥基复合材料性能影响研究进展[J]. 纺织学报, 2021, 42(04): 177-183. |
[9] | 方佳璐, 陈明艳, 黄紫荆. 漂浮自救泳衣设计开发[J]. 纺织学报, 2020, 41(12): 118-123. |
[10] | 金鹏, 薛哲彬, 戈垚. 具有实时瓦斯监测功能的新型智能矿工服设计[J]. 纺织学报, 2020, 41(11): 143-149. |
[11] | 闵小豹, 潘志娟. 国内外医用防护服结构与功能的比较与分析[J]. 纺织学报, 2020, 41(08): 172-178. |
[12] | 刘咏梅, 韩天琪, 张向辉, 吕芳澜. 无省旗袍的结构设计方法[J]. 纺织学报, 2020, 41(06): 99-104. |
[13] | 张海棠, 王宏付, 柯莹. 应急救援类防护服装发展现状与趋势[J]. 纺织学报, 2019, 40(01): 175-181. |
[14] | 刘杰 王府梅. 单向导湿机织物结构设计[J]. 纺织学报, 2018, 39(03): 50-55. |
[15] | 万爱兰 缪旭红 蒋高明 马丕波 陈晴. 两面效应经编牛仔面料结构设计及其风格评价[J]. 纺织学报, 2017, 38(09): 45-50. |
|