纺织学报 ›› 2022, Vol. 43 ›› Issue (09): 21-26.doi: 10.13475/j.fzxb.20220400606

• 特约专栏:纺织智能制造与机器人 • 上一篇    下一篇

纱线自动接头机关键技术

毛慧敏, 孙磊, 屠佳佳, 史伟民()   

  1. 浙江理工大学 现代纺织装备技术教育部工程研究中心, 浙江 杭州 310018
  • 收稿日期:2022-04-01 修回日期:2022-05-12 出版日期:2022-09-15 发布日期:2022-09-26
  • 通讯作者: 史伟民
  • 作者简介:毛慧敏(1994—),女,博士生。主要研究方向为针织机器人机械设计。
  • 基金资助:
    国家重点研发计划项目(2017YFB1304000)

Key technology for yarn automatic splicer

MAO Huimin, SUN Lei, TU Jiajia, SHI Weimin()   

  1. The Center for Engineering Technology of Modern Textile Machinery & Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2022-04-01 Revised:2022-05-12 Published:2022-09-15 Online:2022-09-26
  • Contact: SHI Weimin

摘要:

现有的针织车间接头装置只适用于部分纱线,无法对通用纱线进行接头以及很难在纱架上进行在线接头,为模拟人工打结的工艺流程,设计了一种由负压吸线机构、压线机构、张紧机构、机械打结机构和挑线机构等组成的小型机械式接头机。一方面对其打结机构和挑线机构的机构组成及运动原理进行分析;另一方面对其打结方式及过程进行仿真分析,同时研制样机进行实验测试。结果表明:该机械式接头机能够利用打结机构与挑线机构之间的相互配合,模拟人工打结方式将2根纱线吸取、并拢后完成接头,打结成功率高于99%,具备结构小巧、纱线适用类型广等优点,具有较高的实际推广应用价值。

关键词: 自动接头, 机械打结, 打结机构, 挑线机构, 纱线接头, 智能制造

Abstract:

The existing splicing devices in knitting workshops are only applicable to some limited yarn types and it is difficult to splice automatically on the yarn frame. This research simulated the manual knotting process and designed a small mechanical splicer consisting of negative pressure thread suction, thread pressing, tensioning, mechanical knotting and thread picking mechanism. In parallel to the analysis of construction and motion principle of the knotting and thread picking mechanisms, the knotting method and process were simulated and analyzed, leading to the development of a prototype for experimental testing. The experimental results show that the mechanical splicer can simulate the manual knotting by using the interplay between the knotting mechanism and the thread picking mechanism to draw and join two yarns together, and the success rate of knotting is higher than 99%, and it is structurally compact and applicable for wide range yarn types.

Key words: automatic splicing, mechanical knotting, knotting mechanism, thread picking mechanism, yarn splicing, smart manufacturing

中图分类号: 

  • TS103.7

图1

纱线接头原理 1—并拢; 2—成圈; 3—成结; 4—修剪。"

图2

接头机示意图 1—吸线机构; 2—张紧机构; 3—引导杆; 4—挑线机构; 5—打结机构; 6—压线机构; 7—引导座。"

图3

打结刀部件结构示意图 1—打结刀; 2—打结刀扣; 3—打结刀套; 4—打结刀座; 5—打结齿轮。"

图4

打结刀轮廓曲线与打结刀引导槽轨迹曲线"

图5

挑线部件结构示意图 1—挑线器; 2—挑线凸轮; 3—滚珠; 4—挑线支座; 5—挑线弹簧。"

图6

挑线凸轮轮廓线及挑线机构简图"

图7

吸线机构示意图 1—吸嘴; 2—末位传感器; 3—初始位传感器; 4—吸嘴电动机; 5—吸嘴座; 6—纱线检测传感器。"

图8

不同形状吸嘴仿真结果"

图9

不同内径吸嘴仿真结果"

图10

压线机构示意图 1—滑块; 2—下压件; 3—海绵片; 4—压盘; 5—压盘固定件; 6—下压传感器; 7—连杆; 8—曲柄块; 9—压线电动机。"

图11

传动机构简图 1—打结齿轮; 2—传动齿轮; 3—打结电动机; 4—打结电动机齿轮; 5—打结传动齿轮; 6—伞齿轮2; 7—伞齿轮1。"

图12

打结刀打结过程示意图"

图13

纱线打结过程"

图14

不同纱线接头结果"

[1] 梁艺荧, 何勇, 叶太强, 等. 纱线自动接头关键机构分析[J]. 上海纺织科技, 2020, 48(1): 18-21.
LIANG Yiying, HE Yong, YE Taiqiang, et al. Mechanism analysis of autoconer yarn piecing[J]. Shanghai Textile Science & Technology, 2020, 48(1): 18-21.
[2] CHENG K P S, LAM H L I. Strength of pneumatic spliced polyester/cotton ring spun yarns[J]. Textile Research Journal, 2020, 70(3): 243-246.
doi: 10.1177/004051750007000311
[3] UYANIK S. A research on determining optimum splicing method in terms of fiber types and yarn count[J]. Tekstil ve Konfeksiyon, 2019, 29(1): 22-33.
[4] BERLIN Jinu C K, KANDASAMY Thangamani. CFD simulation analysis of pneumatic splicer[J]. Journal of Engineering, 2017. DOI: 10.1049/joe.2017.0226.
doi: 10.1049/joe.2017.0226
[5] CAVE G E, FRASER W B. The effect of yarn elasticity on the stability of the two-for-one twister balloon[J]. The Journal of The Textile Institute, 2011, 102(5): 373-388.
doi: 10.1080/00405001003790929
[6] 罗栋胜. 粗纱自动打结装置的研究[D]. 上海: 东华大学, 2014:33-42.
LUO Dongsheng. Research on automatic knotting device for roving[D]. Shanghai: Donghua University, 2014:33-42.
[7] 俞鹏飞. 基于磁悬浮的纱线打结器关键技术研究[D]. 上海: 东华大学, 2021:14-16.
YU Pengfei. Research on key technology of yarn knotter based on magnetic levitation[D]. Shanghai: Donghua University, 2021:14-16.
[8] 黄杰. 蚕丝打结机器人动力学的仿真与实验研究[D]. 北京: 北京工业大学, 2018:13-29.
HUANG Jie. Dynamic simulation and experimental research on silk knot robot[D]. Beijing: Beijing University of Technology, 2018:13-29.
[9] 赵文锐, 贺秋森, 张婧怡, 等. 纱线打结拓扑结构的稳定性研究[J]. 棉纺织技术, 2021, 49(8): 22-25.
ZHAO Wenrui, HE Qiusen, ZHANG Jingyi, et al. Study on stability of yarn knotting network topology[J]. Cotton Textile Technology, 2021, 49(8): 22-25.
[10] PATIL V P, SANDT J D, KOLLE M, et al. Topological mechanics of knots and tangles[J]. Science, 2020, 367(6473): 71-75.
doi: 10.1126/science.aaz0135
[1] 张洁, 徐楚桥, 汪俊亮, 郑小虎. 数据驱动的机器人化纺织生产智能管控系统研究进展[J]. 纺织学报, 2022, 43(09): 1-10.
[2] 高晓飞, 齐立哲, 孙云权. 面向柔性面料立体缝纫的随形机械手设计[J]. 纺织学报, 2022, 43(09): 27-33.
[3] 刘锋, 徐杰, 柯文博. 基于深度强化学习的服装缝制过程实时动态调度[J]. 纺织学报, 2022, 43(09): 41-48.
[4] 纪柏林, 王碧佳, 毛志平. 纺织染整领域支撑低碳排放的关键技术[J]. 纺织学报, 2022, 43(01): 113-121.
[5] 杜劲松, 余雅芸, 赵妮, 谢子昂, 费中华, 潘静姝. 不同类型服装企业智能制造能力成熟度评价模型[J]. 纺织学报, 2021, 42(05): 162-167.
[6] 汪松松, 彭来湖, 戴宁, 沈春娅, 胡旭东. 基于工业互联网的针织机械互联互通结构研究[J]. 纺织学报, 2020, 41(01): 165-173.
[7] 周亚勤, 汪俊亮, 鲍劲松, 张洁. 纺织智能制造标准体系架构研究与实现[J]. 纺织学报, 2019, 40(04): 145-151.
[8] 蒋高明 高哲 高梓越. 针织智能制造研究进展[J]. 纺织学报, 2017, 38(10): 178-183.
[9] 梅顺齐 胡贵攀 王建伟 陈振 徐巧. 纺织智能制造及其装备若干关键技术的探讨[J]. 纺织学报, 2017, 38(10): 166-171.
[10] 张洁 吕佑龙 汪俊亮 王海超 . 大数据驱动的纺织智能制造平台架构[J]. 纺织学报, 2017, 38(10): 159-165.
[11] 胡旭东 沈春娅 彭来湖 汝欣. 针织装备的智能制造及互联互通标准验证[J]. 纺织学报, 2017, 38(10): 172-177.
[12] 林建龙;王小北;张力. 新型电脑刺绣机挑线机构圆柱螺旋弹簧设计[J]. 纺织学报, 2009, 30(02): 121-121124.
[13] 林建龙;王小北;顾翔. 新型电脑刺绣机挑线机构设计分析[J]. 纺织学报, 2006, 27(12): 105-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!