纺织学报 ›› 2022, Vol. 43 ›› Issue (09): 27-33.doi: 10.13475/j.fzxb.20210608307

• 特约专栏:纺织智能制造与机器人 • 上一篇    下一篇

面向柔性面料立体缝纫的随形机械手设计

高晓飞, 齐立哲(), 孙云权   

  1. 复旦大学 工程与应用技术研究院, 上海 200433
  • 收稿日期:2021-06-30 修回日期:2022-06-01 出版日期:2022-09-15 发布日期:2022-09-26
  • 通讯作者: 齐立哲
  • 作者简介:高晓飞(1989—),男,助理工程师,硕士。主要研究方向为机器人机构设计与应用技术。
  • 基金资助:
    广东省季华实验室重大共性技术研究项目(Y80311W180);上海市人工智能重大专项资助项目(2021SHZDZX0103)

Design of shape-following manipulator for three-dimensional sewing of flexible fabrics

GAO Xiaofei, QI Lizhe(), SUN Yunquan   

  1. Academy for Engineering & Technology, Fudan University, Shanghai 200433, China
  • Received:2021-06-30 Revised:2022-06-01 Published:2022-09-15 Online:2022-09-26
  • Contact: QI Lizhe

摘要:

针对服装制造业中柔性面料自动化立体缝纫加工难、加工质量稳定性差的问题,提出了一种适用于柔性面料自动化立体缝纫的随形机械手装置。首先分析了缝纫工艺,设计出一种随形机械手结构;其次对该结构进行位置、速度和加速度,以及机械手工作空间的分析;最后对该机械手结构进行力学分析和验证。结果表明:该结构形式的机械手可对袖口直径范围为200~260 mm的袖片具有自适应性,并可实现基于力反馈控制的自动撑紧功能,不会对面料产生损伤,该机械手还可实现自动调布功能,且单手指调节范围为-12.6~16.8 mm,相对误差为4.34%,最大误差值为0.7 mm,可满足实际的缝纫工艺需求。

关键词: 立体缝纫, 柔性面料, 并联机构, 随形机械手, 运动学分析, 智能制造

Abstract:

Aiming at the problems of difficult processing and poor stability in processing quality of automatic three-dimensional sewing of flexible fabrics in the garment manufacturing industry, a shape-following manipulator suitable for automatic three-dimensional sewing of flexible fabrics was proposed. The sewing process was analyzed initially and a shape-following manipulator was designed. The position, velocity and acceleration of the manipulator and its workspace were analyzed, before the mechanical analysis and verification of the manipulator structure were carried out. Experiment results show that the manipulator can adapt to the sleeve with cuff diameter ranging from 200 mm to 260 mm. It can automatically tighten the fabrics according to the force feedback without damage to the fabrics. The manipulator can automatically adjust fabrics, and the one finger adjustment range was -12.6-16.8 mm. The relative error of the experiments was 4.34%, and the maximum error was 0.7 mm, which meets the actual sewing process requirements.

Key words: three-dimensional sewing, flexible fabric, parallel mechanism, shape-following manipulator, kinematics analysis, smart manufacturing

中图分类号: 

  • TP23

图1

T恤衣袖轨迹示意图"

图2

袖片尺寸图"

图3

袖片等分误差图"

图4

4-HPP6R随形机械手三维示意图"

图5

平面连杆机构示意图"

图6

铰链结构矢量图"

图7

连杆结构运动规律曲线图"

图8

机械手爪工作空间"

图9

机械手爪受力分析图"

图10

单手指调节过程"

图11

压力与时间关系图"

图12

机械手实验平台"

表1

手爪单指调节精度实验结果"

时间/s 向上调整面料 向下调整面料
理论值/mm 实际值/mm 误差值/mm 误差率/% 理论值/mm 实际值/mm 误差值/mm 误差率/%
0.1 4.2 4.1 -0.1 2.44 4.2 4.3 -0.1 2.32
0.2 8.4 8.1 -0.3 3.70 8.4 8.2 -0.2 2.43
0.3 12.6 12.7 0.1 0.79 12.6 12.1 -0.5 4.13
0.4 16.8 16.1 -0.7 4.34 16.8 12.3 -4.5 26.80
0.5 21.0 16.2 -4.8 22.90
[1] KIM M, SUL I H, KIM S. Development of a sewing machine controller for seam pucker reduction using online measurement feedback system[J]. Journal of Engineered Fibers and Fabrics, 2017, 12(2): 67-72.
[2] YOSHIMI T, TAKEZAWA K, HIRAYAMA M. An improvement of trajectory tracking accuracy of automatic sewing robot system by variable gain learning control[J]. IFAC-PapersOnLine, 2018, 51(22): 1-6.
[3] SHUNGO T. Development of fabric feed mechanism using horizontal articulated dual manipulator for automated sewing[C]// 2021 IEEE 17th International Conference on Automation Science and Enginee-ring(CASE).Lyon:IEEE, 2021: 1832-1837.
[4] GUIZZO E. Your next T-shirt will be made by a robot[J]. IEEE Spectrum, 2018, 55(1): 50-57.
[5] SCHRIMPF J. Automated sewing using conveyor belts[C]// 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA). Trondheim:IEEE, 2016: 1-4.
[6] SCHRIMPF J, MATHISEN G. Differential feed control applied to corner matching in automated sewing[C]// 2016 IEEE International Conference on Robotics and Automa-tion (ICRA). Stockholm:IEEE, 2016: 3894-3900.
[7] SCHRIMPF J, WETTERWALD L E. Experiments towards automated sewing with a multi-robot system[C]// 2012 IEEE International Conference on Robotics and Automation(ICRA). Minnesota:IEEE, 2012: 5258-5263.
[8] SCHRIMPF J, BJERKENG M, LIND M, et al. Model-based feed-forward and setpoint generation in a multi-robot sewing cell[C]// 2015 IEEE International Conference on Robotics and Automation (ICRA). Washington:IEEE, 2015: 2027-2033.
[9] SCHRIMPF J, LIND M, MATHISEN G. Real-time analysis of a multi-robot sewing cell[C]// 2013 IEEE International Conference on Industrial Tech-nology(ICIT). Cape Town:IEEE, 2013: 163-168.
[10] SCHRIMPF J, WETTERWALD L E, LIND M. Real-time system integration in a multi-robot sewing cell[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Algarve: IEEE, 2012: 2724-2729.
[11] CHEN X, ZHANG Y, XIE J, et al. Robot needle-punching path planning for complex surface preforms[J]. Robotics and Computer-Integrated Manufacturing, 2018, 52: 24-34.
doi: 10.1016/j.rcim.2018.02.004
[12] BRIGGS C. Development of an automation platform for fabric manipulation and assembly[D]. Worcester: Worcester Polytechnic Institute, 2020:14-33.
[13] MELLERO P, BIEGAS S, CARVALHO H, et al. Monitoring and control of industrial sewing machines research on thread tension behavior in lockstitch machines[C]// 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC). Madeira Island:IEEE, 2017: 1031-1036.
[14] TRIANTAFYLLOU D, KOUSTOUMPARDIS P N, ASPRAGATHOS N A. Model reference fuzzy learning force control for robotized sewing[C]// 2011 19th Mediterranean Conference on Control & Automa-tion(MED). Corfu:IEEE, 2011: 1460-1465.
[15] KOUSTOUMPARDIS P N, ASPRAGATHOS N A. Intelligent hierarchical robot control for sewing fabrics[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(1):34-46.
doi: 10.1016/j.rcim.2013.08.001
[16] 王豪清, 童宏拓, 王祝兵, 等. 合成革及皮革与布料间的摩擦系数研究[J]. 中国皮革, 2016(11):4.
WANG Haoqing, TONG Hongtuo, WANG Zhubing, et al. Study on friction coefficient of synthetic leather and leather cloth[J]. China Leather, 2016 (11):4.
[17] 吴济宏, 于伟东. 针织面料的拉伸弹性与服装压[J]. 武汉科技学院学报, 2006, 19(1):21-25.
WU Jihong, YU Weidong. Tensile elasticity and clothing pressure of knitted fabrics[J]. Journal of Wuhan University of Science and Technology, 2006, 19(1): 21-25.
[18] 顾朝晖, 雒少娜. 针织服装面料缝制工艺参数的确定[J]. 纺织学报, 2015, 36(9):94-99.
GU Zhaohui, LUO Shaona. Determination of sewing process parameters of knitted fabric[J]. Journal of Textile Research, 2015, 36 (9): 94-99.
doi: 10.1177/004051756603600113
[1] 张洁, 徐楚桥, 汪俊亮, 郑小虎. 数据驱动的机器人化纺织生产智能管控系统研究进展[J]. 纺织学报, 2022, 43(09): 1-10.
[2] 毛慧敏, 孙磊, 屠佳佳, 史伟民. 纱线自动接头机关键技术[J]. 纺织学报, 2022, 43(09): 21-26.
[3] 刘锋, 徐杰, 柯文博. 基于深度强化学习的服装缝制过程实时动态调度[J]. 纺织学报, 2022, 43(09): 41-48.
[4] 纪柏林, 王碧佳, 毛志平. 纺织染整领域支撑低碳排放的关键技术[J]. 纺织学报, 2022, 43(01): 113-121.
[5] 杨露, 薛涛, 孟家光, 杨豆豆. 3D打印柔性服装面料的负离子功能整理及其性能[J]. 纺织学报, 2021, 42(08): 102-108.
[6] 杜劲松, 余雅芸, 赵妮, 谢子昂, 费中华, 潘静姝. 不同类型服装企业智能制造能力成熟度评价模型[J]. 纺织学报, 2021, 42(05): 162-167.
[7] 汪松松, 彭来湖, 戴宁, 沈春娅, 胡旭东. 基于工业互联网的针织机械互联互通结构研究[J]. 纺织学报, 2020, 41(01): 165-173.
[8] 周亚勤, 汪俊亮, 鲍劲松, 张洁. 纺织智能制造标准体系架构研究与实现[J]. 纺织学报, 2019, 40(04): 145-151.
[9] 袁汝旺 陈瑞 蒋秀明 周国庆. 碳纤维多层织机打纬机构运动学分析与尺度综合[J]. 纺织学报, 2017, 38(11): 137-142.
[10] 蒋高明 高哲 高梓越. 针织智能制造研究进展[J]. 纺织学报, 2017, 38(10): 178-183.
[11] 梅顺齐 胡贵攀 王建伟 陈振 徐巧. 纺织智能制造及其装备若干关键技术的探讨[J]. 纺织学报, 2017, 38(10): 166-171.
[12] 张洁 吕佑龙 汪俊亮 王海超 . 大数据驱动的纺织智能制造平台架构[J]. 纺织学报, 2017, 38(10): 159-165.
[13] 胡旭东 沈春娅 彭来湖 汝欣. 针织装备的智能制造及互联互通标准验证[J]. 纺织学报, 2017, 38(10): 172-177.
[14] 孙志宏 唐甜鑫 赵伯诚 陈燕婷. 偏心带传动机构的运动学分析及其在并条机中的应用[J]. 纺织学报, 2016, 37(12): 117-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!