纺织学报 ›› 2022, Vol. 43 ›› Issue (09): 82-88.doi: 10.13475/j.fzxb.20210601707

• 纤维材料 • 上一篇    下一篇

基于椭圆重叠区域的蚕茧图像融合方法

孙卫红1,2(), 黎雨1,2, 梁曼1,2, 邵铁锋1,2, 高明辉3   

  1. 1.中国计量大学 机电工程学院, 浙江 杭州 310018
    2.中国计量大学 茧丝绸质量检测技术研究所,浙江 杭州 310018
    3.泰安市纺织纤维检验所, 山东 泰安 217000
  • 收稿日期:2021-06-07 修回日期:2022-04-25 出版日期:2022-09-15 发布日期:2022-09-26
  • 作者简介:孙卫红(1969—),男,教授,博士。主要研究方向为数字化设计与制造、制造业信息化。E-mail: whsun@cjlu.edu.cn
  • 基金资助:
    中国纤维质量监测中心项目(OITC-G190281374);国家市场监督管理总局科技计划项目(2019MK149);浙江省公益技术应用研究项目(LGG20E50014);江西省市场监管局科技项目(GSJK201902)

Cocoon image fusion method based on ellipse overlapping area

SUN Weihong1,2(), LI Yu1,2, LIANG Man1,2, SHAO Tiefeng1,2, GAO Minghui3   

  1. 1. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
    2. Cocoon and Silk Quality Inspection Technology Institute, China Jiliang University, Hangzhou, Zhejiang 310018, China
    3. Taian Textile Fiber Inspection Institute, Taian, Shandong 217000, China
  • Received:2021-06-07 Revised:2022-04-25 Published:2022-09-15 Online:2022-09-26

摘要:

针对现有线性权值分配方法对蚕茧图像进行融合时会在高纬度区域出现蚕茧边缘分界线的问题,提出一种基于椭圆重叠区域的蚕茧图像融合方法。首先,利用最小二乘拟合算法得到待拼接图像中蚕茧表面的等效椭圆,输出其在该图像坐标下的位置方程;再根据图像配准过程中得到的横、纵轴位移距离建立蚕茧图像融合的数学模型,获取等效椭圆重叠区域的点集;最后通过椭圆重叠区域的最大宽建立改进的三角函数权重算法,对椭圆重叠区域进行融合处理。结果表明:该方法的融合效果比渐入渐出算法和三角函数权重算法更优,能够有效消除蚕茧边缘分界线,得到具有良好视觉效果且包含更多信息量的蚕茧融合图像。

关键词: 图像配准, 等效椭圆, 重叠区域, 三角函数权重, 融合处理, 蚕茧图像, 蚕茧质量

Abstract:

Aiming at the appearance of boundary lines of the cocoon in the high latitude area when using the existing linear weight assignment method to fuse cocoon images, a cocoon image fusion method based on elliptical overlapping area was proposed. The equivalent ellipse of the cocoon surface in the image to be spliced was obtained by using the least squares fitting algorithm, and its position equation in the image coordinates was output. A mathematical model of cocoon image fusion was then established according to the displacement along the horizontal and vertical axes obtained in the image registration process, and the point set of the overlapping area of the equivalent ellipse was obtained. An improved trigonometric function weight algorithm was established through the maximum width of the ellipse overlapping area to fuse the ellipse overlapping area. The experimental results show that the fusion effect of this method is better than the fading in and out algorithms and trigonometric function weight algorithms, which can effectively eliminate the boundary line of the cocoon, and obtain a cocoon fusion image with good visual effect and more information.

Key words: image registration, equivalent ellipse, overlapping area, trigonometric function weight, fusion processing, cocoon image, cocoon quality

中图分类号: 

  • TP391

图1

采集装置示意图"

图2

蚕茧图像椭圆拟合"

图3

蚕茧图像融合数学模型"

图4

改进的三角函数权重变化图"

图5

改进前后三角函数权重算法的融合结果对比图"

图6

融合前的蚕茧图像"

图7

第1组蚕茧图像融合结果"

图8

第2组蚕茧图像融合结果"

表1

3种方法下蚕茧融合图像客观指标均值对比"

蚕茧图像组别 算法名称 信息熵 平均梯度 空间频率 标准差 互信息
1 渐入渐出算法 6.07 3.97 18.94 72.82 4.400 6
三角函数权重算法 6.10 4.12 20.37 74.11 4.454 3
本文方法 6.12 3.99 19.58 75.30 4.482 8
2 渐入渐出算法 5.95 4.05 19.30 71.11 3.883 4
三角函数权重算法 5.93 4.16 20.01 72.63 3.887 6
本文方法 5.96 4.21 19.72 74.25 3.894 5
相比渐入渐出算法提高百分比/% 0.50 2.23 2.78 3.92 2.15
相比三角函数权重算法提高百分比/% 0.42 -0.98 -2.67 1.92 0.82
[1] 刘莫尘, 许荣浩, 闫筱, 等. 基于FCM及HSV模型的方格蔟黄斑茧检测与剔除技术[J]. 农业机械学报, 2018, 49(7): 31-38.
LIU Mochen, XU Ronghao, YAN Xiao, et al. Detection and removal technology of colloid-mounted cocoons based on FCM and HSV models[J]. Transactions of The Chinese Society for Agricultural Machinery, 2018, 49(7): 31-38.
[2] 宫妍. 全景图像拼接关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2016:10-20.
GONG Yan. Research on key technologies of panoramic image mosaic[D]. Harbin: Harbin Engineering University, 2016:10-20.
[3] QUAN Y, BU L, WU W. Improved weighted average of threshold value of HSV and wavelet transform image fusion[J]. Journal of Liaoning Technical University, 2016. DOI: 10.11956/j.issn.1008-0562.2016.01013.
doi: 10.11956/j.issn.1008-0562.2016.01013
[4] 郭晶. 基于特征点的多幅图像拼接技术研究[D]. 西安: 西安科技大学, 2012:34-36.
GUO Jing. Research on multi-image mosaic technology based on feature points[D]. Xi'an: Xi'an University of Science and Technology, 2012:34-36.
[5] YAN W Q, HOU C P, LEI J J, et al. Stereoscopic image stitching based on a hybrid warping model[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(9):1934-1946.
doi: 10.1109/TCSVT.2016.2564838
[6] WU H, MIAO Z J. Image compostion based on details preserved[C]//Proceedings of the 25th International Congress on Image and Signal Processing. Chongqing: IEEE, 2012: 597-601.
[7] 李海超, 赫胜勇, 朱琦. 多片遥感图像的快速无缝拼接方法[J]. 红外与激光工程, 2011, 40(7): 1381-1386.
LI Haichao, HE Shengyong, ZHU Qi. A fast seamless mosaic method for multiple remote sensing images[J]. Infrared and Laser Engineering, 2011, 40(7): 1381-1386.
[8] 瞿中, 乔高元, 林嗣鹏. 一种消除图像拼接缝和鬼影的快速拼接算法[J]. 计算机科学, 2015, 42(3): 280-283.
doi: 10.11896/j.issn.1002-137X.2015.03.058
QU Zhong, QIAO Gaoyuan, LIN Sipeng. A fast mosaic algorithm for eliminating split seams and ghastly images[J]. Computer Science, 2015, 42(3): 280-283.
doi: 10.11896/j.issn.1002-137X.2015.03.058
[9] 汪丹, 刘辉, 李可, 等. 一种三角函数权重的图像拼接算法[J]. 红外技术, 2017, 35(1): 53-57.
WANG Dan, LIU Hui, LI Ke, et al. An image mosaic algorithm based on trigonometric function weight[J]. Infrared Technology, 2017, 35(1): 53-57.
[10] 刘素一, 夏蕾. 基于元胞自动机的织物图像拼接[J]. 纺织学报, 2011, 32(1): 29-33.
LIU Suyi, XIA Lei. Textile image matching based on cellular automata[J]. Journal of Textile Research, 2011, 31(1): 29-33.
[11] 孙卫红, 廖艺真, 梁曼, 等. 蚕茧表面图像等效阶梯柱面展开[J]. 中国图像图形学报, 2020, 25(3):498-506.
SUN Weihong, LIAO Yizhen, LIANG Man, et al. Cocoon surface image equivalent step cylinder expansion[J]. Journal of Image and Graphics, 2020, 25(3):498-506.
[12] 姚桂国, 梁金祥, 左保齐. 基于网格的织物图像拼接技术[J]. 纺织学报, 2012, 33(2): 46-49.
YAO Guiguo, LIANG Jinxiang, ZUO Baoqi. Fabric image mosaic technology based on mesh[J]. Journal of Textile Research, 2012, 33(2): 46-49.
[13] BAY H, TUYTELAARS T, GOOL L V. SURF: speeded up robust features[C]//9th European Conference on Computer Vision. Austria: Springer, 2006: 404-417.
[14] FIZGIBBON A, PILU M, FISHER R B. Direct least square fitting of ellipses[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5): 476-480.
doi: 10.1109/34.765658
[15] 张小利, 李雄飞, 李军. 融合图像质量评价指标的相关性分析及性能评估[J]. 自动化学报, 2014, 40(2): 306-315.
ZHANG Xiaoli, LI Xiongfei, LI Jun. Correlation analysis and performance evaluation of fusion image quality evaluation index[J]. Acta Automatica Sinica, 2014, 40(2): 306-315.
[16] 陈立伟, 蒋勇. 图像融合算法的综合性能评价指标[J]. 计算机工程, 2015, 41(2): 219-223.
CHEN Liwei, JIANG Yong. Comprehensive performance evaluation index of image fusion algorithm[J]. Computer Engineering, 2015, 41(2): 219-223.
[17] ZHANG X L, LI X F, LI J. Validation and correlation analysis of metrics for evaluation performance of image fusion[J]. Acta Automatica Sinica, 2014, 40(2): 306-315.
[18] 沈英, 黄春红, 黄峰, 等. 红外与可见光图像融合技术的研究进展[J]. 红外与激光工程, 2021, 50(9): 152-169.
SHEN Ying, HUANG Chunhong, HUANG Feng, et al. Research progress of infrared and visible light image fusion technology[J]. Infrared and Laser Engineering, 2021, 50(9): 152-169.
[1] 郑小坚;虞晓华. 不同荧光色家蚕茧的茧丝质研究[J]. 纺织学报, 2001, 22(04): 21-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!