纺织学报 ›› 2022, Vol. 43 ›› Issue (09): 95-100.doi: 10.13475/j.fzxb.20210906806

• 纺织工程 • 上一篇    下一篇

皮芯结构微纳米纤维复合纱线的制备及其性能

胡铖烨1, 周歆如1, 范梦晶1, 洪剑寒1,2,3(), 刘永坤1, 韩潇1, 赵晓曼1   

  1. 1.绍兴文理学院 纺织服装学院, 浙江 绍兴 312000
    2.浙江省清洁染整技术研究重点实验室,浙江 绍兴 312000
    3.纺织行业智能纺织服装柔性器件重点实验室, 江苏 苏州 215123
  • 收稿日期:2021-09-22 修回日期:2022-01-07 出版日期:2022-09-15 发布日期:2022-09-26
  • 通讯作者: 洪剑寒
  • 作者简介:胡铖烨(1997—),女,硕士生。主要研究方向为功能纳米纤维材料的开发与应用。
  • 基金资助:
    浙江省公益技术研究计划项目(LGG20E030002);纺织行业智能服装柔性器件重点实验室开放课题(SDHY2112)

Preparation and properties of skin-core structure micro/nano fiber composite yarns

HU Chengye1, ZHOU Xinru1, FAN Mengjing1, HONG Jianhan1,2,3(), LIU Yongkun1, HAN Xiao1, ZHAO Xiaoman1   

  1. 1. College of Textile and Garment, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China
    3. Key Laboratory of Flexible Devices for Intelligent Textile and Apparel, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2021-09-22 Revised:2022-01-07 Published:2022-09-15 Online:2022-09-26
  • Contact: HONG Jianhan

摘要:

为探究纺丝液质量分数对皮芯结构微纳米纤维复合纱线结构与性能的影响,利用双针头水浴静电纺丝法连续制备了以聚对苯二甲酸乙二醇酯(PET)长丝为芯、外包聚酰胺6(PA6)的皮芯结构微纳米纤维复合纱线,通过扫描电子显微镜、差示扫描量热仪和万能材料试验机对其形貌结构、热性能和力学性能等进行测试与表征。结果表明:不同PA6纺丝液质量分数制备的微纳米纤维复合纱线均具有良好的皮芯结构;当PA6纺丝液质量分数从10%提高到20%时,纳米纤维复合纱线的平均直径从(61.99±13.08) nm增加到(150.22±21.53) nm,结晶度由16.28%提高至20.63%;当PA6纺丝液质量分数为20%时复合纱线的结晶度达到了常规PA6纤维的结晶范围,增加纺丝液质量分数一定程度上可提高复合纱线的力学性能。

关键词: 静电纺丝, 双针头水浴法, 微纳米纤维复合纱线, 聚对苯二甲酸乙二醇酯, 聚酰胺6

Abstract:

In order to investigate the effect of spinning solution mass fraction on the structure and properties of skin-core structure micro/nano fiber composite yarn, a composite yarn with polyethylene terephthalate(PET) as core and polyamide 6(PA6) nanofiber as skin was prepared by the two-needle water bath electrospinning method. The morphology structure, thermal and mechanical properties of PET/PA6 composite yarns were characterized by scanning electron microscope, differential scanning calorimeter and universal material testing machine. The results revealed the relationships between the different mass fraction of PA6 spinning solution and the skin-core structure. The average diameter of nanofibers increased from (61.99±13.08) nm to (150.22±21.53) nm, and the crystallinity increased from 16.28% to 20.63% when the mass fraction of PA6 spinning solution increased from 10% to 20%. When the mass fraction of PA6 spinning solution was 20%, the crystallinity reached the crystallization range of the conventional PA6 fibers. Increasing the mass fraction of spinning solution was also found to improve the mechanical properties of composite yarn to some extent.

Key words: electrospinning, two-needle water bath method, micro/nano fiber composite yarn, polyethylene terephthalate, polyamide 6

中图分类号: 

  • TQ340.69

图1

双针头水浴静电纺丝示意图 1—退绕辊; 2—高压电源; 3—PET长丝; 4—针头; 5—水浴槽; 6—铜片; 7—注射器; 8—加热照射灯; 9—微纳米纤维复合纱线; 10—卷绕辊。"

图2

微纳米纤维复合纱线截面形貌及在不同PA6纺丝液质量分数下的表面形貌"

表1

不同PA6质量分数下纺丝液黏度和表面张力变化"

PA6质量分数/% 黏度/(mPa·s) 表面张力/(mN·m-1)
10 98.2 39.991±0.028
12 334.2 40.197±0.027
15 696.6 40.657±0.025
18 1 213.4 40.850±0.030
20 2 360.8 41.289±0.028

图3

不同质量分数下的PA6纳米纤维直径分布图"

图4

PA6质量分数对纳米纤维直径的影响"

表2

PA6质量分数对复合纱线包覆率和线密度的影响"

PA6质量分数/% 包覆率/% 线密度/tex
10 23.11 34.20
12 25.16 34.77
15 38.66 38.52
18 42.37 39.55
20 43.48 39.86

图5

不同质量分数PA6纳米纤维包覆层DSC曲线"

表3

PA6质量分数对复合纱线力学性能的影响"

PA6质量
分数/%
断裂强
力/N
断裂伸长
率/%
断裂强度/
(cN·dtex-1)
初始模量/
(cN·dtex-1)
10 18.32 45.75 5.36 14.81
12 17.99 47.16 5.17 14.94
15 19.22 43.47 4.99 14.71
18 19.17 45.17 4.85 14.04
20 17.94 42.65 4.50 13.78
芯纱 17.73 44.02 6.38 18.09

表4

PA6质量分数对纳米纤维包覆层力学性能的影响"

PA6质量
分数/%
断裂强
力/cN
断裂伸长
率/%
断裂强度/
(cN·dtex-1)
初始模量/
(cN·dtex-1)
10 18.71 25.43 0.29 1.57
12 26.18 29.85 0.37 1.71
15 55.89 40.57 0.52 1.53
18 88.00 49.57 0.75 2.02
20 39.25 35.91 0.32 0.90
[1] GÖKTEPE F, MÜLAYIM B B. Long path towards to success in electrospun nanofiber yarn production since 1930's: a critical review[J]. Autex Research Journal, 2018, 18(2): 87-109.
doi: 10.1515/aut-2018-0004
[2] 申妮, 徐磊, 王大伟, 等. 静电纺丝技术的应用与现状[J]. 西部皮革, 2017, 39(18): 14.
SHEN Ni, XU Lei, WANG Dawei, et al. Application and present situation of electrospinning technology[J]. Western Leather, 2017, 39(18): 14.
[3] 刘宇健, 谭晶, 陈明军, 等. 静电纺纳米纤维纱线研究进展[J]. 纺织学报, 2020, 41(2): 165-171.
LIU Yujian, TAN Jing, CHEN Mingjun, et al. Research progress of electrospun nanofiber yarns[J]. Journal of Textile Research, 2020, 41(2): 165-171.
[4] 谭耀红, 刘呈坤, 毛雪. 静电纺制备定向纳米纤维集合体的研究现状[J]. 高分子材料科学与工程, 2018, 34(11): 183-190.
TAN Yaohong, LIU Chengkun, MAO Xue. Research status of electrospun aligned nanofiber array[J]. Polymer Materials Science & Engineering, 2018, 34(11): 183-190.
[5] BAZBOUZ M B, STYLIOS G K. A new mechanism for the electrospinning of nanoyarns[J]. Journal of Applied Polymer Science, 2012, 124(1): 195-201.
doi: 10.1002/app.31930
[6] DABIRIAN F, RAVANDI S A H, HINESTROZA J P, et al. Conformal coating of yarns and wires with electrospun nanofibers[J]. Polymer Engineering & Science, 2012, 52(8): 1724-1732.
[7] RAVANDI S A H, DABIRIAN F, SANATGAR R H. Capillary rise investigation of core-spun nanofiber yarn[J]. Industria Textila, 2011, 62(2): 59-63.
[8] HE J X, ZHOU Y M, WU Y C, et al. Nanofiber coated hybrid yarn fabricated by novel electrospinning-airflow twisting method[J]. Surface and Coatings Technology, 2014, 258: 398-404.
doi: 10.1016/j.surfcoat.2014.08.062
[9] 王鹏, 周玉嫚, 管声启, 等. 多喷头喷气静电纺纳米纤维包芯纱制备[J]. 西安工程大学学报, 2015, 29(4): 467-470.
WANG Peng, ZHOU Yuman, GUAN Shengqi, et al. Nanofiber core-spun yarn produced by multi-nozzle air jet electro-spinning[J]. Journal of Xi'an Polytechnic University, 2015, 29(4): 467-470.
[10] 周玉嫚. 纳米纤维包芯纱的成纱机理与实验[D]. 郑州: 中原工学院, 2014: 15-22.
ZHOU Yuman. Spinning mechanism and experiment of nanofiber core-spun yarn[D]. Zhengzhou: Zhongyuan University of Technology, 2014: 15-22.
[11] 王怡婷, 詹建朝, 王迎. 静电纺制备聚氨酯-Fe3O4纳米纤维包芯纱[J]. 上海纺织科技, 2018, 46(6): 41-43,48.
WANG Yiting, ZHAN Jianchao, WANG Ying. Electorspun of polyurethane-Fe3O4 nanofiber core spun yarn[J]. Shanghai Textile Science & Technology, 2018, 46(6): 41-43,48.
[12] 贾琳. 基于表面张力下取向微纳米纤维的优化制备及应用[D]. 上海: 东华大学, 2013: 36-37.
JIA Lin. The optimized preparation and application of electrospun aligned nanofibers on the basis of surface tension[D]. Shanghai: Donghua University, 2013: 36-37.
[13] 夏艳杰, 高晓艳, 潘志娟. 尼龙6/66纺丝液的性能与其静电纺效果的关系[J]. 苏州大学学报(工科版), 2009, 29(1): 34-38.
XIA Yanjie, GAO Xiaoyan, PAN Zhijuan. Relationship between the solution properties of nylon6/66 and electrospinning[J]. Journal of Soochow Univer-sity(Engineering Science Edition), 2009, 29(1): 34-38.
[14] 于春兰, 庄兴民, 晏雄. 静电纺丝工艺参数对聚酰胺6纳米纤维形态结构的影响[J]. 产业用纺织品, 2013, 31(3):10-13.
YU Chunlan, ZHUANG Xingmin, YAN Xiong. Effect of electrospinning process parameters on morphological structure of PA6 nanofiber[J]. Techniacl Textiles, 2013, 31(3):10-13.
[15] 姚穆. 纺织材料学[M]. 3版. 北京: 中国纺织出版社, 2009:134.
YAO Mu. Textile materials[M]. 3rd ed. Beijing: China Textile & Apparel press, 2009:134.
[1] 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39.
[2] 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59.
[3] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[4] 欧康康, 祁琳雅, 侯怡君, 范天华, 齐琨, 王宝秀, 王华平. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(06): 49-56.
[5] 李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(05): 178-184.
[6] 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69.
[7] 陈明军, 李好义, 杨卫民. 聚合物熔体微分静电纺电场对射流的影响及其物理模型[J]. 纺织学报, 2022, 43(05): 70-76.
[8] 杨科, 闫俊, 肖勇, 徐晶, 陈磊, 刘雍. 电化学沉积锌电池MnOx/碳纳米纤维膜自支撑正极的制备及其电化学特性[J]. 纺织学报, 2022, 43(05): 77-85.
[9] 孙哲茹, 张庆乐, 郝林聪, 程璐, 夏鑫. 仿星型拓扑几何结构聚氨酯/聚二甲基硅氧烷防水透湿膜制备与性能[J]. 纺织学报, 2022, 43(04): 40-46.
[10] 金旭, 刘方, 杜嬛, 华超, 公旭中, 张秀芹, 汪滨. 纳米纤维负载型纳米零价铁基材料在环境修复中的应用研究进展[J]. 纺织学报, 2022, 43(03): 201-209.
[11] 张宇, 刘来俊, 李超婧, 晋巧巧, 谢千阳, 李佩伦, 王富军, 王璐. 外泌体功能化串晶结构纤维膜的制备及其成骨分化性能[J]. 纺织学报, 2022, 43(03): 24-30.
[12] 徐晓彤, 江振林, 郑钦超, 朱科宇, 王朝生, 柯福佑. 导热结构对聚对苯二甲酸乙二醇酯非等温结晶行为的影响[J]. 纺织学报, 2022, 43(03): 44-49.
[13] 张爱琴, 郝佳程, 王芷, 王永超, 刘淑强, 董海亮, 贾虎生, 许并社. 键合型高分子荧光纤维的制备及其荧光增强机制[J]. 纺织学报, 2022, 43(03): 50-57.
[14] 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70.
[15] 王锐, 刘彦麟, 刘蕴钰, 顾伟文, 刘紫灵, 魏建斐. 以聚对苯二甲酸乙二醇酯为前驱体的碳点制备及其应用[J]. 纺织学报, 2022, 43(02): 10-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!