纺织学报 ›› 2022, Vol. 43 ›› Issue (10): 1-9.doi: 10.13475/j.fzxb.20211202809

• 纤维材料 •    下一篇

超支化季铵盐诱导制备树枝状纳米纤维膜及其性能

姚莹1, 赵为陶2, 张德锁1(), 林红1, 陈宇岳1, 魏红3   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215021
    2.常州纺织服装职业技术学院, 江苏 常州 213164
    3.苏州市纤维检验院, 江苏 苏州 215004
  • 收稿日期:2021-12-13 修回日期:2022-03-09 出版日期:2022-10-15 发布日期:2022-10-28
  • 通讯作者: 张德锁
  • 作者简介:姚莹(1996—),女,硕士生。主要研究方向为微纳米纤维材料及其应用。
  • 基金资助:
    苏州市重点产业技术创新前瞻性应用研究项目(SYG201936);国家先进功能纤维创新中心盛虹应急保障与公共安全用纤维材料及制品科研攻关项目(2020-fx010002)

Preparation of dendritic nanofiber membrane induced by hyperbranched quaternary ammonium salt and its properties

YAO Ying1, ZHAO Weitao2, ZHANG Desuo1(), LIN Hong1, CHEN Yuyue1, WEI Hong3   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. Changzhou Vocational Institute of Textile and Garment, Changzhou, Jiangsu 213164, China
    3. Suzhou Institute of Fiber Inspection, Suzhou, Jiangsu 215004, China
  • Received:2021-12-13 Revised:2022-03-09 Published:2022-10-15 Online:2022-10-28
  • Contact: ZHANG Desuo

摘要:

为开发具有高效过滤性能的膜材料,以超支化季铵盐(HBP-HTC)为枝化促进剂,利用静电纺丝技术一步法制备了聚偏氟乙烯(PVDF)树枝状纳米纤维膜,探讨了纺丝工艺对纤维膜成形结构的影响,分析了树枝状纳米纤维膜的力学性能及其空气过滤性能。结果表明:由于HBP-HTC表面丰富的季铵基团具有对电荷的稳定富集作用,可获得比用小分子季铵盐制成膜更多的树枝状纳米纤维结构,当PVDF质量分数为12%,季铵基团添加量为 0.10 mol/L, 纺丝电压为25 kV时,制得的纤维膜树枝状覆盖率高达78.32%,且具有较好的力学性能;所制备的纳米纤维膜厚度为40 μm时,其过滤效率高达99.995%,而压降为122.4 Pa。

关键词: 超支化季铵盐, 静电纺丝, 聚偏氟乙烯, 树枝状纳米纤维, 过滤性能

Abstract:

In order to develop membrane materials with high efficiency filtration performance, this research prepared polyvinylidene fluoride (PVDF) dendritic nanofiber membranes using hyperbranched quaternary ammonium salt (HBP-HTC) as a branching promoter based on electrostatic spinning technology in one step. The influence of the spinning process on the forming structure of the fiber membrane was explored. The mechanical properties of the dendritic nanofiber membrane were analyzed and its air filtration performance was measured. The results showed that the nanofiber membrane prepared with HBP-HTC has more dendritic structures than the membrance prepared with small molecule quaternary ammonium salts due to the abundant quaternary ammonium groups on the surface of HBP-HTC, which has a stable enrichment effect on charge. When the mass fraction of PVDF was 12%, the quaternary ammonium groups was 0.1 mol/L, and the spinning voltage was 25 kV, the dendritic coverage of the fabricated fiber membranes was as high as 78.32% and demonstrated good mechanical properties. The filtration efficiency of the prepared nanofiber membrane reached 99.995% at the thickness of 40 μm, while the pressure drop is 122.4 Pa.

Key words: hyperbranched quaternary ammonium salt, electrostatic spinning, polyvinylidene fluoride, dendritic nanofiber, filtering performance

中图分类号: 

  • TQ342

图1

树枝状覆盖率测定处理照片 注:白色线圈出部分为树枝状部分。"

图2

静电纺PVDF树枝状纳米纤维膜制备示意图"

图3

添加不同季铵盐后PVDF纳米纤维膜的SEM照片"

表1

添加不同季铵盐对纺丝液电导率及纤维膜的树枝状覆盖率的影响"

盐的种类 电导率/(mS·m-1) 覆盖率/%
5.95 0.00
TBAC 140.80 45.87
HBP-HTC 178.72 78.32

表2

不同HBP-HTC添加量对纺丝液电导率和黏度的影响"

HBP-HTC浓度/(mol·L-1) 电导率/(mS·m-1) 黏度/(Pa·s)
0 5.95 1.26
0.05 116.34 1.40
0.10 178.72 1.69
0.15 196.76 1.77

图4

不同HBP-HTC添加量制备的PVDF纳米纤维膜SEM照片与纤维直径分布图"

图5

不同纺丝电压下制备的PVDF纳米纤维膜SEM照片"

图6

不同HBP-HTC添加量制备的PVDF纳米纤维膜的应力-应变曲线"

表3

不同HBP-HTC浓度制备的PVDF纤维膜的空气过滤性能"

HBP-HTC浓度/
(mol·L-1)
过滤效
率/%
压降/
Pa
品质因数/
Pa-1
0 88.360 47.9 0.045
0.05 99.703 104.9 0.055
0.10 99.995 122.4 0.081
0.15 99.930 113.5 0.064

图7

不同厚度PVDF纳米纤维膜的空气过滤性能"

表4

HBP-HTC/PVDF纳米纤维膜与其他静电纺纳米纤维膜对0.26 μm NaCl气溶胶的过滤效率和阻力压降对比"

纤维膜原料 树枝化
结构
过滤效
率/%
压降/
Pa
文献
聚酰亚胺 99.990 251.9 [19]
聚丙烯腈 99.560 270.0 [20]
聚乳酸 99.964 197.9 [21]
聚苯乙烯/碳纳米管 99.680 235.4 [22]
超支化季铵盐/
聚偏氟乙烯
99.995 122.4 本文研究
[1] 吴波伟, 吕惠娇, 钱幺. 空气净化器用纤维过滤材料的应用及发展[J]. 天津纺织科技, 2021(3):50-52.
WU Bowei, LÜ Huijiao, QIAN Yao. Application and development of fiber filter materials for air purifiers[J]. Tianjin Textile and Technology, 2021(3): 50-52.
[2] SRIDHAR R, LAKSHMINARAYANAN R, MADHAIYAN K, et al. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals[J]. Chemical Society Reviews, 2015, 44(3): 790-814.
doi: 10.1039/c4cs00226a pmid: 25408245
[3] 张丽, 蒙冉菊, 高慧英, 等. 静电纺纳米纤维空气过滤材料研究进展[J]. 纺织科技进展, 2016(6):18-22.
ZHANG Li, MENG Ranju, GAO Huiying, et al. Research progress of electrostatic spinning nanofiber air filtration materials[J]. Progress in Textile Science and Technology, 2016(6): 18-22.
[4] PARK H S, PARK Y O. Filtration properties of electrospun ultrafine fiber webs[J]. Korean Journal of Chemical Engineering, 2005, 22(1): 165-172.
doi: 10.1007/BF02701480
[5] 王亚芳. 静电纺丝法构筑聚酰亚胺基高温空气过滤材料及其性能研究[D]. 西安: 陕西科技大学, 2021:10-12.
WANG Yafang. Study on theconstruction and property of polyimide-based filters for high temperature air pollution control via electrospinning[D]. Xi'an: Shaanxi University of Science and Technology, 2021: 10-12.
[6] WU J, WANG N, ZHAO Y, et al. Electrospinning of multilevel structured functional micro-/nanofibers and their applications[J]. Journal of Materials Chemistry A, 2013, 1(25): 7290-7305.
doi: 10.1039/c3ta10451f
[7] YANG G, LI X, HE Y, et al. From nano to micro to macro: electrospun hierarchically structured polymeric fibers for biomedical applications[J]. Progress in Polymer Science, 2018, 81: 80-113.
doi: 10.1016/j.progpolymsci.2017.12.003
[8] 程博闻, 高鲁, SARMAD Bushra, 等. 静电纺树枝状聚乳酸纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2018, 39(12): 139-144.
CHENG Bowen, GAO Lu, SARMAD Bushra, et al. Fabrication of polylactic acid tree-like nanofiber membraneand its application in filtration[J]. Journal of Textile Research, 2018, 39(12): 139-144.
[9] XIAO Y, WANG Y, ZHU W, et al. Development of tree-like nanofibrous air filter with durable antibacterial property[J]. Separation and Purification Technology, 2021, 259: 118135.
doi: 10.1016/j.seppur.2020.118135
[10] 张德锁. HBP-HTC的制备及其对真丝(绸)的改性研究[D]. 苏州: 苏州大学, 2009: 12-13.
ZHANG Desuo. Preparation of HBP-HTC and its modification on B.mori silk[D]. Suzhou: Soochow University, 2009: 12-13.
[11] 洪贤良, 陈小晖, 张建青, 等. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(6):174-182.
HONG Xianliang, CHEN Xiaohui, ZHANG Jianqing, et al. Research progress in preparation of hierarchically structured air filter materials by electrospinning[J]. Journal of Textile Research, 2020, 41(6): 174-182.
doi: 10.1177/004051757104100215
[12] 厉宗洁. 静电纺聚偏氟乙烯多尺度树枝结构纳米纤维的制备及其应用研究[D]. 天津: 天津工业大学, 2017:27-32.
LI Zongjie. Preparation of electrostatically spun polyvinylidene fluoride multi-scale dendritic structure nanofibers and its application research[D]. Tianjin: Tiangong University, 2017: 27-32.
[13] ZHANG K, LI Z, KANG W, et al. Preparation and characterization of tree-like cellulose nanofiber membranes via the electrospinning method[J]. Carbohydrate Polymers, 2018, 183: 62-69.
doi: S0144-8617(17)31308-5 pmid: 29352893
[14] REN L, GENG J, WANG N, et al. Preparation of partially end-capped amino-terminated hyperbranched polymer and dyeing properties enhancement to polyurethane membrane[J]. Textile Research Journal, 2018, 88(20): 2319-2328.
doi: 10.1177/0040517517720504
[15] 汪小亮. 双喷静电纺PA6/66纳米蛛网纤维膜的制备及其过滤性能[D]. 苏州: 苏州大学, 2015: 15-16.
WANG Xiaoliang. Nano-nets membranes fabrication and filtration properties with double syringe needles electrospinning[D]. Suzhou: Soochow University, 2015:15-16.
[16] ZHANG G, WANG D, XIAO Y, et al. Fabrication of Ag Np-coated wetlace nonwoven fabric based on amino-terminated hyperbranched polymer[J]. Nanotechnology Reviews, 2019, 8(1): 100-106.
doi: 10.1515/ntrev-2019-0009
[17] 秦笑梅, 陈亚培. 超支化聚合物的合成及应用研究进展[J]. 化工新型材料, 2020, 48(7):6-10.
QIN Xiaomei, CHEN Yapei. Research progress on synthesis and application of hyperbranched polymer[J]. New Chemical Materials, 2020, 48(7): 6-10.
[18] ZHANG K, LI Z, KANG W, et al. Preparation and characterization of tree-like cellulose nanofiber membranes via the electrospinning method[J]. Carbohydrate Polymers, 2018, 183: 62-69.
doi: S0144-8617(17)31308-5 pmid: 29352893
[19] WANG Q, BAI Y, XIE J, et al. Synthesis and filtration properties of polyimide nanofiber membrane/carbon woven fabric sandwiched hot gas filters for removal of PM2.5 particles[J]. Powder Technology, 2016, 292: 54-63.
doi: 10.1016/j.powtec.2016.01.008
[20] XU J, LIU C, HSU P C, et al. Roll-to-roll transfer of electrospun nanofiber film for high-efficiency transparent air filter[J]. Nano Letters, 2016, 16(2): 1270-1275.
doi: 10.1021/acs.nanolett.5b04596 pmid: 26789781
[21] 王哲, 潘志娟. 静电纺聚乳酸纤维的孔隙结构及其空气过滤性能[J]. 纺织学报, 2014, 35(11):6-12.
WANG Zhe, PAN Zhijuan. Porous structure and air filtration performance of electrospinning PLA fibers[J]. Journal of Textile Research, 2014, 35(11):6-12.
[22] 汪策, 李雄, 程诚, 等. 空气过滤用静电纺聚苯乙烯/碳纳米管复合纤维膜的制备[J]. 材料科学与工程学报, 2016, 34(6):960-966.
WANG Ce, LI Xiong, CHENG Cheng, et al. Preparation of ultrafine fibrous membranes of polystyrene/MWCNTs composites as air filter by electrospinning[J]. Journal of Materials Science and Engineering, 2016, 34(6):960-966.
[1] 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23.
[2] 杨吉震, 刘强飞, 何瑞东, 吴韶华, 何宏伟, 宁新, 周蓉, 董湘琳, 齐贵山. 高效低阻空气过滤材料研究进展[J]. 纺织学报, 2022, 43(10): 209-215.
[3] 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100.
[4] 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59.
[5] 渠赟, 马维, 刘颖, 任学宏. 可光降解聚羟基丁酸酯/聚己内酯基抗菌纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(06): 29-36.
[6] 欧康康, 祁琳雅, 侯怡君, 范天华, 齐琨, 王宝秀, 王华平. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(06): 49-56.
[7] 李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(05): 178-184.
[8] 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69.
[9] 陈明军, 李好义, 杨卫民. 聚合物熔体微分静电纺电场对射流的影响及其物理模型[J]. 纺织学报, 2022, 43(05): 70-76.
[10] 杨科, 闫俊, 肖勇, 徐晶, 陈磊, 刘雍. 电化学沉积锌电池MnOx/碳纳米纤维膜自支撑正极的制备及其电化学特性[J]. 纺织学报, 2022, 43(05): 77-85.
[11] 孙哲茹, 张庆乐, 郝林聪, 程璐, 夏鑫. 仿星型拓扑几何结构聚氨酯/聚二甲基硅氧烷防水透湿膜制备与性能[J]. 纺织学报, 2022, 43(04): 40-46.
[12] 金旭, 刘方, 杜嬛, 华超, 公旭中, 张秀芹, 汪滨. 纳米纤维负载型纳米零价铁基材料在环境修复中的应用研究进展[J]. 纺织学报, 2022, 43(03): 201-209.
[13] 张宇, 刘来俊, 李超婧, 晋巧巧, 谢千阳, 李佩伦, 王富军, 王璐. 外泌体功能化串晶结构纤维膜的制备及其成骨分化性能[J]. 纺织学报, 2022, 43(03): 24-30.
[14] 张爱琴, 郝佳程, 王芷, 王永超, 刘淑强, 董海亮, 贾虎生, 许并社. 键合型高分子荧光纤维的制备及其荧光增强机制[J]. 纺织学报, 2022, 43(03): 50-57.
[15] 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!