纺织学报 ›› 2022, Vol. 43 ›› Issue (10): 45-52.doi: 10.13475/j.fzxb.20210604308

• 纺织工程 • 上一篇    下一篇

动态力学载荷对超细镀金钼丝力学与电学性能的影响

李建娜1,2, 陈玺1,2, 邵慧奇1,2,3, 邵光伟1,2,3, 蒋金华1,2,3, 陈南梁1,2,3()   

  1. 1.东华大学 产业用纺织品教育部工程研究中心, 上海 201620
    2.东华大学 纺织学院, 上海 201620
    3.东华大学 纺织科技创新中心, 上海 201620
  • 收稿日期:2021-06-17 修回日期:2022-05-06 出版日期:2022-10-15 发布日期:2022-10-28
  • 通讯作者: 陈南梁
  • 作者简介:李建娜(1993—),女,博士。主要研究方向为金属基电磁屏蔽用纺织品。
  • 基金资助:
    上海市自然科学基金项目(20ZR1401600);上海市自然科学基金项目(20ZR1400600);中央高校基本科研业务费专项资金资助项目(2232020D-09);中央高校基本科研业务费专项资金资助项目(2232020G-06)

Effect of dynamic mechanical load on mechanical and electrical properties of ultra-fine gold coated molybdenum wires

LI Jianna1,2, CHEN Xi1,2, SHAO Huiqi1,2,3, SHAO Guangwei1,2,3, JIANG Jinhua1,2,3, CHEN Nanliang1,2,3()   

  1. 1. Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
    3. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2021-06-17 Revised:2022-05-06 Published:2022-10-15 Online:2022-10-28
  • Contact: CHEN Nanliang

摘要:

为探究超细金属纱线在力学循环加载后的弯曲刚度下降和能量耗散行为,对不同结构镀金钼丝纱线进行了50次循环弯曲和200次往复摩擦实验,并对摩擦前后的表观形态、拉伸性能和电学性能进行了比较。基于镀金钼丝纱线的微观形貌和实验结果,结合能量损耗分析方法,研究其在弯曲循环载荷和摩擦往复载荷下的力学及结构响应,定量分析金属丝的可编织性。结果表明:镀金钼丝在循环弯曲和往复摩擦载荷下,微观和宏观结构受到损伤,力学性能下降,接触电阻略有增大;该条件下,双股镀金钼丝刚度和强度下降程度最大,不适合上机织造,单股和三股镀金钼丝动态力学性能稳定,且在动态载荷作用下能保持良好的电学性能,可用做电磁屏蔽织物等功能性材料编织。

关键词: 镀金钼丝, 循环弯曲, 往复摩擦, 可编织性能, 电学性能, 金属纱线

Abstract:

Aiming at the understanding of reduction of bending stiffness and energy dissipation in ultra-fine metal yarns after cyclic loading, yarns made from gold coated molybdenum wires with different structures were studied subject to 50 cycles of bending and 200 cycles of reciprocating friction, followed by the comparison of the morphology, tensile properties and electrical properties. The mechanical and structural responses of the yarns under cyclic bending load and friction reciprocating load were investigated, and the knittability of the yarns from metal wires was quantitatively analyzed. The results show that the micro- and macro-structures of gold coated molybdenum wire are damaged, the mechanical properties are decreased and the contact electrical resistance is slightly increased under the cyclic bending and reciprocating friction loads. The tensile rigidity and strength of double-stranded gold coated molybdenum yarns are greatly decreased under the same conditions, which is not suitable for fabric knitting. The dynamic mechanical properties and electrical properties of mono- and triple-stranded gold-coated molybdenum wires are stable under dynamic load, which can be used as raw materials for knitting electromagnetic shielding fabrics.

Key words: gold coated molybdenum wire, cyclic bending, reciprocating friction, knittability, electrical performance, metallic yarn

中图分类号: 

  • TS181

图1

3种镀金钼丝纱线结构示意图"

图2

循环弯曲测试示意图"

图3

往复摩擦加载设备示意图"

图4

接触电阻测试设备示意图"

图5

循环弯曲加载分析"

图6

镀金钼丝纱线循环弯曲载荷-弯曲挠度曲线"

图7

镀金钼丝纱线弯曲刚度损失"

图8

镀金钼丝纱线在循环弯曲载荷下的能量耗散分析"

图9

镀金钼丝纱线在200次往复摩擦加载前后的表观形貌对比 注:1#、2#、3#分别为单股、双股和三股金属丝。"

表1

镀金钼丝摩擦前后Au元素"

金属丝
股数
摩擦前Au
元素占比/%
摩擦后Au
元素占比/%
损耗率/
%
1 92.50 89.49 3.25
2 90.52 78.72 13.04
3 91.17 86.90 4.68

图10

镀金钼丝纱线在往复摩擦作用前后的拉伸性能"

表2

镀金钼丝纱线摩擦前后接触电阻"

金属丝
股数
摩擦前接
触电阻/Ω
摩擦后接
触电阻/Ω
电阻变化
率/%
1 14.43 14.87 3.04
2 10.79 11.37 5.33
3 9.60 10.19 6.21
[1] TUGIRUMUBANO A, VIJAY S J, SUN H G, et al. Characterization of electromagnetic interference shielding composed of carbon fibers reinforced plastics and metal wire mesh based composites[J]. Journal of Materials Research and Technology, 2019, 8(1): 167-172.
doi: 10.1016/j.jmrt.2017.08.013
[2] TUGIRUMUBANO A, VIJAY S, GO S H, et al. The evaluation of electromagnetic shielding properties of CFRP/metal mesh hybrid woven laminated composites[J]. Journal of Composite Materials, 2018, 52(27): 3819-3829.
doi: 10.1177/0021998318770511
[3] 魏贺, 蒋金华, 陈南梁. 经编过程中金属丝耐摩擦性能的研究[J]. 产业用纺织品, 2012(4): 18-21.
WEI He, JIANG Jinhua, CHEN Nanliang. Study on abradability of stainless wire yarn during warp knitting process[J]. Technical Textiles, 2012(4): 18-21.
[4] LI S, SHAN Z, DU D, et al. Effect of processing parameters on friction and damage of carbon yarn during three-dimensional weaving[J]. Journal of The Textile Institute, 2021(2): 1-10.
[5] 何青, 胡红. 玄武岩纤维纱线在电脑横机上可编织性的探讨[J]. 东华大学学报(自然科学版), 2009, 35(3): 279-283.
HE Qing, HU Hong. Investigation on the knittability of basalt fiber yarns by a computerized flat knitting machine[J]. Journal of Donghua University(Natural Science), 2009, 35(3): 279-283.
[6] IQBAL W, JIANG Y, QI Y X, et al. Yarn damage evaluation in the flat knitting process[J]. Autex Research Journal, 2021, 21(3): 272-283.
doi: 10.2478/aut-2020-0014
[7] 应芬, 贾伟, 李楠, 等. 超细金属丝可编织性及其网眼织物的力学性能研究[J]. 国际纺织导报, 2019, 47(4): 29-34.
YING Fen, JIA Wei, LI Nan, et al. The study on the knitting property of uItrafine wire and mechanical properties of its warp knitting mesh fabric[J]. Melliand China, 2019, 47(4): 29-30.
[8] LIN F, JIANG J, CHEN N, et al. The improved knittability of polyimide fibers using oxygen plasma and coating treatments[C]// Proceedings of 21st International Conference on Composite Materials. Shanxi: Chinese Society for Composite Materials, 2017: 1029-1030.
[9] LIN F, LI W, DU X, et al. Structure, property and knittability of polyimide filaments with various strength and modulus[J]. Textile Research Journal, 2019, 89(5): 771-781.
doi: 10.1177/0040517518755787
[10] 徐海燕, 陈南梁, 蒋金华, 等. 加捻金属丝纱线的制备及其弯曲刚度[J]. 纺织学报, 2019, 40(1): 57-61.
XU Haiyan, CHEN Nanliang, JIANG Jinhua, et al. Preparation and bending rigidness of twisted metal yarn[J]. Journal of Textile Research, 2019, 40(1): 57-61.
[11] LI Jianna, SHAO Huiqi, CHEN Xi, et al. Comparison of three methods for measuring the bending stiffness of ultrafine metal wires[J]. Materials Testing, 2022, 64(1): 132-142.
doi: 10.1515/mt-2021-2000
[12] 汪泽幸, 吴波, 何斌, 等. 循环荷载下黄麻纤维/聚乙烯复合材料的残余变形演化与能量耗散特性[J]. 产业用纺织品, 2019(10): 25-29.
WANG Zexing, WU Bo, HE Bin, et al. Residual deformation evolution and energy dissipation characteristics of jute fiber/polyethylene composites under cyclic loading[J]. Technical Textiles, 2019(10): 25-29.
[13] VAN PAEPEGEM W, DEGRIECK J. Experimental set-up for and numerical modelling of bending fatigue experiments on plain woven glass/epoxy composites[J]. Composite Structures, 2001, 51(1): 1-8.
doi: 10.1016/S0263-8223(00)00092-1
[14] SUN Baozhong, WANG Jinhua, WU Liwei, et al. Computational schemes on the bending fatigue deformation and damage of three-dimensional orthogonal woven composite materials[J]. Computational Materials Science, 2014, 91: 91-101.
doi: 10.1016/j.commatsci.2014.04.052
[1] 赵亚茹, 肖红, 陈剑英. 不锈钢短纤维/棉包覆氨纶纱的弹性与电学性能[J]. 纺织学报, 2020, 41(03): 45-50.
[2] 徐海燕, 陈南梁, 蒋金华, 邵光伟. 加捻金属丝纱线的制备及其弯曲刚度[J]. 纺织学报, 2019, 40(01): 57-61.
[3] 李清文 赵静娜 张骁骅. 碳纳米管纤维的物理性能与宏量制备及其应用[J]. 纺织学报, 2018, 39(12): 145-151.
[4] 贾高鹏;来侃;孙润军. 基于Lab VIEW的纤维集合体微电流测试仪的研制[J]. 纺织学报, 2010, 31(3): 119-122.
[5] 唐建国;李祚启;张曙光. 含铜聚丙烯睛基导电纤维稳定性的再研究[J]. 纺织学报, 1998, 19(03): 4-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!