纺织学报 ›› 2022, Vol. 43 ›› Issue (10): 97-105.doi: 10.13475/j.fzxb.20220408509

• 染整与化学品 • 上一篇    下一篇

Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能

周小桔, 胡正龙(), 任一鸣, 谢兰东   

  1. 湖北科技学院 电子与信息工程学院, 湖北 咸宁 437100
  • 收稿日期:2022-04-27 修回日期:2022-07-15 出版日期:2022-10-15 发布日期:2022-10-28
  • 通讯作者: 胡正龙
  • 作者简介:周小桔(1984—),女,讲师,硕士。主要研究方向为光电材料。
  • 基金资助:
    国家自然科学基金项目(11747044);湖北科技学院国家级科研项目培育计划项目(2020-22GP08);湖北科技学院校内培育项目(2022-23X09)

Fabrication and photocatalyic performance of Bi2MoO6 modified TiO2 nanorod array photocatalyst

ZHOU Xiaoju, HU Zhenglong(), REN Yiming, XIE Landong   

  1. School of Electronic and Information Engineering, Hubei University of Science and Technology,Xianning, Hubei 437100, China
  • Received:2022-04-27 Revised:2022-07-15 Published:2022-10-15 Online:2022-10-28
  • Contact: HU Zhenglong

摘要:

为获得可回收的高效降解有机污染物光催化剂,采用水热/溶剂热二步法在TiO2纳米棒阵列上修饰Bi2MoO6纳米片,合成了Bi2MoO6/TiO2复合纳米棒阵列可见光催化剂。对Bi2MoO6/TiO2光催化剂的形貌、结构、化学元素组成和光学性能进行分析,并借助电化学工作站测试了Bi2MoO6/TiO2纳米棒阵列异质结构的光电化学性能和光催化性能,分析了光催化活性增强的机制。结果表明:较窄带隙的Bi2MoO6修饰TiO2纳米棒阵列拓宽了光谱响应范围,促进了光生载流子的有效分离和转移,显著提高了亚甲基蓝的光催化降解效率;TiO2和Bi2MoO6之间形成type Ⅱ型异质结,Bi2MoO6/TiO2的type Ⅱ型能带结构与可见光的扩展吸收之间的协同作用是光催化性能提升的内在机制。

关键词: 印染废水处理, 光催化降解, 光降解机制, 溶剂热法, 可见光催化剂

Abstract:

In order to obtain a recyclable photocatalyst for efficient degradation of organic pollutants under visible light, TiO2 nanorod arrays were modified with Bi2MoO6 nanosheets by hydrothermal solvothermal two-step method to obtain Bi2MoO6/TiO2 composite. The morphology, structure, chemical element composition and optical properties of Bi2MoO6/TiO2 photocatalyst were analyzed, and the photoelectrochemical and photocatalytic properties of Bi2MoO6/TiO2 photocatalyst were tested with the help of electrochemical workstation in order to analyze the mechanism of enhanced photocatalytic activity. The results show that modification of TiO2 nanorod arrays by Bi2MoO6 with narrow gap broadens the spectral response range, promotes the effective separation and transfer of photogenerated carriers, and obtains significantly enhanced photocatalytic degradation efficiency of methylene blue. The energy band structure diagram shows that type II heterojunction is formed between TiO2 and Bi2MoO6, which promotes the separation and transfer of photogenerated electron holes. The synergistic effect between type II band structure of Bi2MoO6/TiO2 and the extended absorption of visible light is the internal mechanism for the improvement of photocatalytic properties.

Key words: printing and dyeing wastewater treatment, photocatalytic biodegradation, photo-degradation mechanism, solvothermal method, visible light catalyst

中图分类号: 

  • O649.4

图1

TiO2/FTO、Bi2MoO6和Bi2MoO6/TiO2的XRD图"

图2

TiO2、Bi2MoO6和Bi2MoO6/TiO2光催化剂的SEM照片"

图3

TiO2、Bi2MoO6和Bi2MoO6/TiO2复合材料的N2吸附-脱附等温线和孔容积"

图4

TiO2、Bi2MoO6和Bi2MoO6/TiO2的TEM和HRTEM照片"

图5

Bi2MoO6/TiO2光催化剂的XPS图谱"

图6

TiO2、Bi2MoO6和Bi2MoO6/TiO2的紫外-可见光吸收光谱及带隙图"

图7

TiO2、Bi2MoO6和Bi2MoO6/TiO2的光致发光光谱"

图8

TiO2、Bi2MoO6和Bi2MoO6/TiO2的J-V曲线及光电转换效率"

图9

TiO2、Bi2MoO6和Bi2MoO6/TiO2异质结的瞬态光电流响应和电化学阻抗谱"

图10

TiO2和Bi2MoO6莫特-肖特基曲线"

图11

Bi2MoO6/TiO2异质结构的光催化降解曲线"

图12

Bi2MoO6/TiO2光催化剂的ESR谱"

图13

Bi2MoO6/TiO2异质结构能带图和光催化降解有机染料的机制 注:CB和VB分别表示导带和价带; Eg为禁带宽度。"

[1] 施敏慧, 李冰蕊, 王挺, 等. 高含盐废水中TiO2复合光催化剂光降解甲基橙机制及性能[J]. 纺织学报, 2021, 42(12): 103-110.
SHI Minhui, LI Bingrui, WANG Ting, et al. Mechanism and performance of TiO2 composite photocatalysts for photo-degradation of methyl-orange in highly saline wastesater[J]. Journal of Textile Research, 2021, 42(12): 103-110.
[2] 吴海培, 高晓红, 方婧, 等. 二氧化钛/还原氧化石墨烯复合材料的制备及其光催化降解脱色性能[J]. 纺织学报, 2018, 39(12): 78-83.
WU Haipei, GAO Xiaohong, FANG Jing, et al. Preparation and photocatalytic degradation decoloring of TiO2/reduced graphene oxide composites[J]. Journal of Textile Research, 2018, 39(12): 78-83.
doi: 10.1177/004051756903900112
[3] YADAV H M, KIM J S, PAWAR S H. Developments in photocatalytic antibacterial activity of nano TiO2: a review[J]. Korean Journal of Chemical Engineering, 2016, 33: 1989-1998.
doi: 10.1007/s11814-016-0118-2
[4] GRABOWSKA E, RESZCZY N J, ZALESKA A. Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review[J]. Water Research, 2012, 46, 5453-5471.
[5] MOHAMED M A, JAFAR J, ZAIN M F M, et al. Concurrent growth, structural and photocatalytic properties of hybridized C, N co-doped TiO2 mixed phase over g-C3N4 nanostructured[J]. Scripta Materialia, 2018, 142: 143-147.
doi: 10.1016/j.scriptamat.2017.08.044
[6] SABER N B, MEZNI A, ALROOQI A, et al. Fabrication of efficient Au@TiO2/rGO heterojunction nanocomposite: boosted photocatalytic activity under ultraviolet and visible light irradiation[J]. Journal of Materials Research and Technology, 2021, 12: 2238-2246.
doi: 10.1016/j.jmrt.2021.03.109
[7] ISMAEL M. A review and recent advances in solar-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles[J]. Solar Energy, 2020, 211: 522-546.
doi: 10.1016/j.solener.2020.09.073
[8] FU Y, MAO Z P, ZHOU D, et al. Fabrication of Ni-doped PbTiO3-coated TiO2 nanorod arrays for improved photoelectrochemical performance[J]. Journal of Nanomaterials, 2019.DOI: 10.1155/2019/5924672.
doi: 10.1155/2019/5924672
[9] YU H, JIANG L, WANG H, et al. Photocatalysis: Modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: a critical review[J]. Small, 2019. DOI: 10.1002/smll.201901008.
doi: 10.1002/smll.201901008
[10] PENG Y, LIU Q, ZHANG J, et al. Enhanced visible-light-driven photocatalytic activity by 0D/2D phase heterojunction of quantum dots/nanosheets on bismuth molybdates[J]. Journal of Physical Chemistry C, 2018, 122: 3738-3747.
doi: 10.1021/acs.jpcc.7b11567
[11] TIAN G, CHEN Y, ZHAI R, et al. Hierarchical flake-like Bi2MoO6/TiO2 bilayer films for visible-light-induced self-cleaning applications[J]. Journal Materials Chemistry A, 2013, 1: 6961-6968.
doi: 10.1039/c3ta10511c
[12] LI J, LIU X, SUN Z, et al. Novel Bi2MoO6/TiO2 heterostructure microspheres for degradation of benzene series compound under visible light irradiation[J]. Journal of Colloid and Interface Science, 2016, 463: 145-153.
doi: 10.1016/j.jcis.2015.10.055
[13] ZHANG M, SHAO C, MU J, et al. One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity[J]. CrystEngComm, 2012. DOI: 10.1039/C1CE05974B.
doi: 10.1039/C1CE05974B
[14] SHARMA S, BASU S. Highly reusable visible light active hierarchical porous WO3/SiO2 monolith in centimeter length scale for enhanced photocatalytic degradation of toxic pollutants[J]. Separation and Purification Technology, 2020. DOI: 10.1016/j.seppur.2019.115916.
doi: 10.1016/j.seppur.2019.115916
[15] LINDGREN T, WANG H, BEERMANN N, et al. Aqueous photoelectrochemistry of hematite nanorod array[J]. Solar Energy Materials and Solar Cells, 2002, 71: 231-243.
doi: 10.1016/S0927-0248(01)00062-9
[16] GE M, CAO C, HUANG J, et al. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications[J]. Journal Materials Chemistry A, 2016, 4: 6772-6801.
doi: 10.1039/C5TA09323F
[17] CHENG X, ZHANG Y, BI Y. Spatial dual-electric fields for highly enhanced the solar water splitting of TiO2 nanotube arrays[J]. Nano Energy, 2019, 57: 542-548.
doi: 10.1016/j.nanoen.2018.12.079
[18] ZHANG D, HE S, LIN Z, et al. Preparation and photoelectrocatalytic performance of Bi2MoO6@CQDs/TiO2 nanotube array[J]. Journal of the Chinese Ceramic Society, 2021, 12: 4137-4143.
[19] TIAN J, HAO P, WEI N, et al. 3D Bi2MoO6nanosheet/TiO2 nanobelt heterostructure: enhanced photocatalytic activities and photoelectrochemistry performance[J]. ACS Catalysis, 2015, 5(8): 4530-4536.
doi: 10.1021/acscatal.5b00560
[20] LI Z Q, CHEN X T, XUE Z L. Bi2MoO6 microstructures: controllable synthesis, growth mechanism, and visible light driven, photocatalytic activities[J]. CrystEngComm, 2013, 15: 498-508.
doi: 10.1039/C2CE26260F
[21] YUNARTI R T, SAFITRI T N, DIMONTI L, et al. Facile synthesis of composite between titania nanoparticles with highly exposed (001) facet and coconut shell-derived graphene oxide for photo-degradation of methylene blue[J]. Journal of Physics and Chemistry of Solids, 2022, 160: 110357.
doi: 10.1016/j.jpcs.2021.110357
[22] TAE W K, KYOUNG S C. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting[J]. Science, 2014, 343: 990-994.
doi: 10.1126/science.1246913
[23] LI H, ZHANG T, PAN C, et al. Self-assembled Bi2MoO6/TiO2 nanofiber heterojunction film with enhanced photo-catalytic activities[J]. Applied Surface Science, 2017, 391: 303-310.
doi: 10.1016/j.apsusc.2016.06.167
[24] CAI K, LV S, SONG L, et al. Facile preparation of ultrathin Bi2MoO6 nanosheets for photocatalytic oxidation of toluene to benzaldehyde under visible light irradiation[J]. Journal of Solid State Chemistry, 2019, 269: 145-150.
doi: 10.1016/j.jssc.2018.09.027
[25] DINH C T, YEN H, KLEITZ F, et al. Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nano-spheres for enhanced visible-light-driven photocatalysis[J]. Angewandte Chemie International, 2014, 53: 6618-6623.
doi: 10.1002/anie.201400966
[26] LI Q, LI L, LONG X, et al. Rational design of MIL-88A(Fe)/Bi2WO6 heterojunctions as an efficient photocatalyst for organic pollutant degradation under visible light irradiation[J]. Optical Materials, 2021. DOI: 10.1016/j.optmat.2021.111260.
doi: 10.1016/j.optmat.2021.111260
[27] SUBRAMANIAN V, WOLF E, KAMAT P V. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration[J]. Journal of the American Chemical Society, 2004, 126(15): 4943- 4950.
pmid: 15080700
[28] YUS J, FERRARI B, SANCHEZ A J, et al. Understanding the effects of different microstructural contributions in the electrochemical response of Nickel-based semiconductor electrodes with 3D hierarchical networks shapes[J]. Electrochimica Acta, 2020. DOI: 10.1016/j.electacta.2020.135629.
doi: 10.1016/j.electacta.2020.135629
[29] ZHAO K, ZHAO S, GAO C, et al. Metallic cobalt-carbon composite as recyclable and robust magnetic photocatalyst for efficient CO2 reduction[J]. Small, 2018. DOI: 10.1002/smll.201800762.
doi: 10.1002/smll.201800762
[30] SINGH S, SANGLE A L, WU T, et al. Growth of doped SrTiO3 ferroelectric nanoporous thin films and tuning of photoelectrochemical properties with switchable ferroelectric polarization[J]. ACS Applied Materials & Interfaces, 2019, 11: 45683-45691.
[31] HAN S, LI B, HUANG L, et al. Construction of ZnIn2S4-CdIn2S4 microspheres for efficient photo-catalytic reduction of CO2 with visible light[J]. Chinese Journal of Structural Chemistry, 2022, 41: 2201007-2201013.
[32] ZUO G, WANG Y, TEO W L, et al. Direct Z-scheme TiO2-ZnIn2S4 nanoflowers for cocatalyst-free photocatalytic water splitting[J]. Applied Catalysis B: Environmental, 2021.DOI: 10.1016/j.apcatb.2021.120126.
doi: 10.1016/j.apcatb.2021.120126
[33] ZHOU T, ZHANG H, ZHANG X, et al. BiOI/Bi2O2CO3 two-dimensional hetero-nanostructures with boosting charge carrier separation behavior and enhanced visible light photocatalytic performance[J]. Journal of Physical Chemistry C, 2020, 124: 20294-20308.
doi: 10.1021/acs.jpcc.0c06833
[34] HU J, GONG Q, WANG Q, et al. Spherical Bi2MoO6/Bi2S3/MoS2n-p heterojunction with excellent visible-light photocatalytic reduction Cr(VI) activity[J]. Nanomaterials, 2020. DOI: 10.3390/nano10091813.
doi: 10.3390/nano10091813
[1] 郑琳娟, 郁佳, 尹冲, 梁志结, 毛庆辉. 多酸基金属-有机框架负载棉织物的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 106-111.
[2] 冯艳, 李亮, 刘淑萍, 李淑静, 刘让同. 氮碳量子点/二氧化钛复合整理粘胶织物光催化协同构效[J]. 纺织学报, 2022, 43(10): 112-118.
[3] 张雅宁, 张辉, 宋悦悦, 李文明, 李雯君, 姚佳乐. 废弃口罩基ZIF-8/Ag/TiO2复合材料的制备及其光催化降解染料性能[J]. 纺织学报, 2022, 43(07): 111-120.
[4] 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60.
[5] 施敏慧, 李冰蕊, 王挺, 吴礼光. 高含盐废水中TiO2复合光催化剂光降解甲基橙机制及性能[J]. 纺织学报, 2021, 42(12): 103-110.
[6] 李庆, 陈灵辉, 李丹, 吴志强, 朱炜, 樊增禄. 金属-有机骨架光催化降解染料的研究进展[J]. 纺织学报, 2021, 42(12): 188-195.
[7] 张雨晗, 申国栋, 樊威, 孙润军. 芳纶固载BiOBr复合材料的制备及其光催化降解染色废水[J]. 纺织学报, 2021, 42(08): 128-134.
[8] 张婷婷, 许可欣, 金梦甜, 葛世洁, 高国洪, 蔡一啸, 王华平. 纤维素基有机-无机纳米光催化复合材料制备及其水处理应用的研究进展[J]. 纺织学报, 2021, 42(07): 175-183.
[9] 蒋文雯, 莫慧琳, 樊婷玥, 赵紫瑶, 任煜, 王春霞, 张伟, 臧传锋. Ag6Si2O7/TiO2 复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(04): 107-113.
[10] 娄娅娅, 王静, 董燕超, 王春梅. 粘胶基沸石咪唑骨架材料的制备及其对染料的脱色[J]. 纺织学报, 2021, 42(02): 142-147.
[11] 李庆, 管斌斌, 王雅, 刘天卉, 张洛红, 樊增禄. 光敏剂敏化Cu-有机骨架对活性深蓝K-R的高效光催化降解[J]. 纺织学报, 2020, 41(10): 87-93.
[12] 韩烨, 张辉, 朱国庆, 武海良. 聚乙二醇对硫酸钛水热改性涤纶光催化性能的影响[J]. 纺织学报, 2019, 40(10): 33-41.
[13] 李庆 张莹 樊增禄 朱炜. Cu-有机骨架对染料废水的吸附和可见光降解[J]. 纺织学报, 2018, 39(02): 112-118.
[14] 冯雅妮 张梅 罗胜利 白玉颖 司马义· 艾沙江 邱夷平 蒋秋冉. 光催化除甲醛苎麻织物的低温复合制备[J]. 纺织学报, 2017, 38(12): 106-111.
[15] 冯静 杜英英 邢彦军. 钨杂二氧化钛负载棉织物的微波法制备及光催化性能[J]. 纺织学报, 2014, 35(7): 88-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!